12n
0577
(K12n
0577
)
A knot diagram
1
Linearized knot diagam
3 7 12 11 10 2 12 1 3 4 5 8
Solving Sequence
5,11 8,12
1 4 3 7 2 6 10 9
c
11
c
12
c
4
c
3
c
7
c
2
c
6
c
10
c
9
c
1
, c
5
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hu
18
+ 3u
17
+ ··· + 4b + 4, 2u
18
+ 3u
17
+ ··· + 4a 2, u
19
+ 2u
18
+ ··· 2u + 2i
I
u
2
= hu
3
3u
2
+ b 2u + 2, 2u
3
3u
2
+ 3a 3u, u
4
3u
2
+ 3i
I
u
3
= hu
3
+ u
2
+ b, u
2
+ a + u + 2, u
4
u
2
1i
I
u
4
= h−a
2
+ b + a + 2, a
3
2a
2
3a 1, u 1i
I
v
1
= ha, b 1, v 1i
* 5 irreducible components of dim
C
= 0, with total 31 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
18
+3u
17
+· · ·+4b+4, 2u
18
+3u
17
+· · ·+4a2, u
19
+2u
18
+· · ·2u+2i
(i) Arc colorings
a
5
=
0
u
a
11
=
1
0
a
8
=
1
2
u
18
3
4
u
17
+ ··· + u +
1
2
1
4
u
18
3
4
u
17
+ ··· +
3
2
u 1
a
12
=
1
u
2
a
1
=
1
2
u
18
13
4
u
16
+ ···
1
2
u +
3
2
3
2
u
18
+
3
2
u
17
+ ··· 3u + 2
a
4
=
u
u
a
3
=
u
3
+ 2u
u
5
+ u
3
+ u
a
7
=
1
4
u
17
+
3
2
u
15
+ ··· + u + 1
1
4
u
17
+
3
2
u
15
+ ···
3
2
u
2
1
2
u
a
2
=
1
2
u
12
5
2
u
10
+ ··· +
3
2
u + 1
1
4
u
17
3
2
u
15
+ ··· +
3
2
u
2
+
1
2
u
a
6
=
u
5
2u
3
+ u
u
5
u
3
u
a
10
=
u
2
+ 1
u
2
a
9
=
u
10
5u
8
+ 8u
6
3u
4
3u
2
+ 1
u
12
4u
10
+ 4u
8
+ 2u
6
3u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
18
+ 14u
16
+ 2u
15
40u
14
12u
13
+ 46u
12
+ 28u
11
+ 18u
10
26u
9
98u
8
4u
7
+ 64u
6
+ 22u
5
+ 36u
4
12u
3
38u
2
+ 8u 12
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
19
4u
18
+ ··· + 1887u + 49
c
2
, c
6
u
19
2u
18
+ ··· 37u 7
c
3
, c
5
u
19
3u
18
+ ··· 122u 46
c
4
, c
10
, c
11
u
19
2u
18
+ ··· 2u 2
c
7
, c
8
, c
12
u
19
+ 2u
18
+ ··· + 63u 7
c
9
u
19
4u
18
+ ··· + 13446u 5482
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
19
+ 64y
18
+ ··· + 3231195y 2401
c
2
, c
6
y
19
+ 4y
18
+ ··· + 1887y 49
c
3
, c
5
y
19
+ 35y
18
+ ··· + 9456y 2116
c
4
, c
10
, c
11
y
19
14y
18
+ ··· + 8y 4
c
7
, c
8
, c
12
y
19
36y
18
+ ··· + 6895y 49
c
9
y
19
+ 110y
18
+ ··· 1950902712y 30052324
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.057514 + 0.997076I
a = 4.41674 + 0.12405I
b = 2.30270 0.31667I
19.3196 + 4.9982I 1.30896 2.07714I
u = 0.057514 0.997076I
a = 4.41674 0.12405I
b = 2.30270 + 0.31667I
19.3196 4.9982I 1.30896 + 2.07714I
u = 0.142968 + 0.865479I
a = 3.01025 + 1.29423I
b = 1.029780 + 0.322487I
7.61295 + 0.58148I 0.023432 0.755964I
u = 0.142968 0.865479I
a = 3.01025 1.29423I
b = 1.029780 0.322487I
7.61295 0.58148I 0.023432 + 0.755964I
u = 1.24695
a = 0.418171
b = 1.55733
2.34368 4.04380
u = 1.223500 + 0.244957I
a = 0.177243 + 0.379170I
b = 0.340423 + 0.077135I
2.81621 + 4.28308I 9.76275 6.60090I
u = 1.223500 0.244957I
a = 0.177243 0.379170I
b = 0.340423 0.077135I
2.81621 4.28308I 9.76275 + 6.60090I
u = 1.178360 + 0.467565I
a = 2.39170 0.15913I
b = 3.99920 2.07726I
4.46238 + 4.21258I 3.28610 3.54866I
u = 1.178360 0.467565I
a = 2.39170 + 0.15913I
b = 3.99920 + 2.07726I
4.46238 4.21258I 3.28610 + 3.54866I
u = 1.28379
a = 1.10593
b = 1.73530
5.57169 16.6430
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.282330 + 0.529998I
a = 2.87135 + 1.25440I
b = 4.30847 + 5.80802I
16.3839 + 0.4170I 3.95888 0.90643I
u = 1.282330 0.529998I
a = 2.87135 1.25440I
b = 4.30847 5.80802I
16.3839 0.4170I 3.95888 + 0.90643I
u = 1.358030 + 0.344537I
a = 1.32857 + 1.36569I
b = 2.46464 + 3.90915I
2.84646 4.89611I 3.78070 + 3.50098I
u = 1.358030 0.344537I
a = 1.32857 1.36569I
b = 2.46464 3.90915I
2.84646 + 4.89611I 3.78070 3.50098I
u = 1.35479 + 0.47305I
a = 2.92129 1.22251I
b = 5.11425 5.33647I
15.7390 10.2337I 4.55408 + 4.64263I
u = 1.35479 0.47305I
a = 2.92129 + 1.22251I
b = 5.11425 + 5.33647I
15.7390 + 10.2337I 4.55408 4.64263I
u = 0.021436 + 0.497066I
a = 0.993630 0.078348I
b = 0.348156 0.347395I
0.87785 1.46275I 1.25478 + 5.25309I
u = 0.021436 0.497066I
a = 0.993630 + 0.078348I
b = 0.348156 + 0.347395I
0.87785 + 1.46275I 1.25478 5.25309I
u = 0.337682
a = 1.22310
b = 0.259248
0.889902 13.4540
6
II. I
u
2
= hu
3
3u
2
+ b 2u + 2, 2u
3
3u
2
+ 3a 3u, u
4
3u
2
+ 3i
(i) Arc colorings
a
5
=
0
u
a
11
=
1
0
a
8
=
2
3
u
3
+ u
2
+ u
u
3
+ 3u
2
+ 2u 2
a
12
=
1
u
2
a
1
=
2
3
u
3
u
2
u + 1
u
3
2u
2
2u + 2
a
4
=
u
u
a
3
=
u
3
+ 2u
2u
3
+ 4u
a
7
=
2
3
u
3
+ u
2
+ u 1
u
3
+ 2u
2
+ 2u 2
a
2
=
1
3
u
3
u
2
+ u + 1
u
3
2u
2
+ 2u + 2
a
6
=
u
3
+ 2u
2u
3
+ 4u
a
10
=
u
2
+ 1
u
2
a
9
=
1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
12
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
12
(u 1)
4
c
3
, c
5
, c
9
u
4
+ 3u
2
+ 3
c
4
, c
10
, c
11
u
4
3u
2
+ 3
c
6
, c
7
, c
8
(u + 1)
4
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
12
(y 1)
4
c
3
, c
5
, c
9
(y
2
+ 3y + 3)
2
c
4
, c
10
, c
11
(y
2
3y + 3)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.271230 + 0.340625I
a = 1.69666 + 0.13208I
b = 3.43060 + 1.66747I
4.05977I 6.00000 + 3.46410I
u = 1.271230 0.340625I
a = 1.69666 0.13208I
b = 3.43060 1.66747I
4.05977I 6.00000 3.46410I
u = 1.271230 + 0.340625I
a = 1.30334 1.59997I
b = 1.56940 3.52868I
4.05977I 6.00000 3.46410I
u = 1.271230 0.340625I
a = 1.30334 + 1.59997I
b = 1.56940 + 3.52868I
4.05977I 6.00000 + 3.46410I
10
III. I
u
3
= hu
3
+ u
2
+ b, u
2
+ a + u + 2, u
4
u
2
1i
(i) Arc colorings
a
5
=
0
u
a
11
=
1
0
a
8
=
u
2
u 2
u
3
u
2
a
12
=
1
u
2
a
1
=
u
2
u 1
u
3
a
4
=
u
u
a
3
=
u
3
+ 2u
0
a
7
=
u
2
u 1
u
3
a
2
=
u
3
+ u
2
+ u 1
u
3
a
6
=
u
3
2u
0
a
10
=
u
2
+ 1
u
2
a
9
=
1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
4
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
7
c
8
(u 1)
4
c
2
, c
12
(u + 1)
4
c
3
, c
5
, c
9
u
4
+ u
2
1
c
4
, c
10
, c
11
u
4
u
2
1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
12
(y 1)
4
c
3
, c
5
, c
9
(y
2
+ y 1)
2
c
4
, c
10
, c
11
(y
2
y 1)
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.786151I
a = 2.61803 0.78615I
b = 0.618034 + 0.485868I
3.94784 1.52790
u = 0.786151I
a = 2.61803 + 0.78615I
b = 0.618034 0.485868I
3.94784 1.52790
u = 1.27202
a = 1.65399
b = 3.67621
3.94784 10.4720
u = 1.27202
a = 0.890054
b = 0.440137
3.94784 10.4720
14
IV. I
u
4
= h−a
2
+ b + a + 2, a
3
2a
2
3a 1, u 1i
(i) Arc colorings
a
5
=
0
1
a
11
=
1
0
a
8
=
a
a
2
a 2
a
12
=
1
1
a
1
=
a
a
2
4a 2
a
4
=
1
1
a
3
=
1
1
a
7
=
a
2
+ 3a + 2
a
a
2
=
a
2
+ 2a + 2
a
a
6
=
0
1
a
10
=
0
1
a
9
=
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
3
+ 2u
2
+ u + 1
c
2
, c
6
, c
7
c
8
, c
12
u
3
u 1
c
3
, c
5
u
3
c
4
, c
9
, c
10
c
11
(u + 1)
3
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
3
2y
2
3y 1
c
2
, c
6
, c
7
c
8
, c
12
y
3
2y
2
+ y 1
c
3
, c
5
y
3
c
4
, c
9
, c
10
c
11
(y 1)
3
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.539798 + 0.182582I
b = 1.202160 0.379697I
1.64493 6.00000
u = 1.00000
a = 0.539798 0.182582I
b = 1.202160 + 0.379697I
1.64493 6.00000
u = 1.00000
a = 3.07960
b = 4.40431
1.64493 6.00000
18
V. I
v
1
= ha, b 1, v 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
1
0
a
8
=
0
1
a
12
=
1
0
a
1
=
1
1
a
4
=
1
0
a
3
=
1
0
a
7
=
1
1
a
2
=
2
1
a
6
=
1
0
a
10
=
1
0
a
9
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
12
u 1
c
3
, c
4
, c
5
c
9
, c
10
, c
11
u
c
6
, c
7
, c
8
u + 1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
12
y 1
c
3
, c
4
, c
5
c
9
, c
10
, c
11
y
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
0 0
22
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
9
)(u
3
+ 2u
2
+ u + 1)(u
19
4u
18
+ ··· + 1887u + 49)
c
2
((u 1)
5
)(u + 1)
4
(u
3
u 1)(u
19
2u
18
+ ··· 37u 7)
c
3
, c
5
u
4
(u
4
+ u
2
1)(u
4
+ 3u
2
+ 3)(u
19
3u
18
+ ··· 122u 46)
c
4
, c
10
, c
11
u(u + 1)
3
(u
4
3u
2
+ 3)(u
4
u
2
1)(u
19
2u
18
+ ··· 2u 2)
c
6
((u 1)
4
)(u + 1)
5
(u
3
u 1)(u
19
2u
18
+ ··· 37u 7)
c
7
, c
8
((u 1)
4
)(u + 1)
5
(u
3
u 1)(u
19
+ 2u
18
+ ··· + 63u 7)
c
9
u(u + 1)
3
(u
4
+ u
2
1)(u
4
+ 3u
2
+ 3)(u
19
4u
18
+ ··· + 13446u 5482)
c
12
((u 1)
5
)(u + 1)
4
(u
3
u 1)(u
19
+ 2u
18
+ ··· + 63u 7)
23
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
9
)(y
3
2y
2
3y 1)(y
19
+ 64y
18
+ ··· + 3231195y 2401)
c
2
, c
6
((y 1)
9
)(y
3
2y
2
+ y 1)(y
19
+ 4y
18
+ ··· + 1887y 49)
c
3
, c
5
y
4
(y
2
+ y 1)
2
(y
2
+ 3y + 3)
2
(y
19
+ 35y
18
+ ··· + 9456y 2116)
c
4
, c
10
, c
11
y(y 1)
3
(y
2
3y + 3)
2
(y
2
y 1)
2
(y
19
14y
18
+ ··· + 8y 4)
c
7
, c
8
, c
12
((y 1)
9
)(y
3
2y
2
+ y 1)(y
19
36y
18
+ ··· + 6895y 49)
c
9
y(y 1)
3
(y
2
+ y 1)
2
(y
2
+ 3y + 3)
2
· (y
19
+ 110y
18
+ ··· 1950902712y 30052324)
24