12n
0578
(K12n
0578
)
A knot diagram
1
Linearized knot diagam
3 7 8 9 10 2 12 6 5 4 7 8
Solving Sequence
7,12 3,8
4 2 1 6 9 11 10 5
c
7
c
3
c
2
c
1
c
6
c
8
c
11
c
10
c
5
c
4
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= hb u, u
23
u
22
+ ··· + 16a + 1, u
25
u
24
+ ··· + 3u
2
1i
I
u
2
= h−36334607050217u
29
+ 39477995355924u
28
+ ··· + 2200950009156001b 1119770521665287,
u
29
+ u
28
+ ··· + 7a 6, u
30
u
29
+ ··· + 6u + 7i
I
u
3
= hb + 1, a
4
+ 4a
3
+ 9a
2
+ 10a + 7, u 1i
I
u
4
= hb 1, a
4
4a
3
+ 7a
2
6a + 1, u + 1i
I
u
5
= hb + 1, a + 1, u 1i
* 5 irreducible components of dim
C
= 0, with total 64 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hb u, u
23
u
22
+ · · · + 16a + 1, u
25
u
24
+ · · · + 3u
2
1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
3
=
1
16
u
23
+
1
16
u
22
+ ··· 2u
1
16
u
a
8
=
1
u
2
a
4
=
u
1
16
u
23
1
16
u
22
+ ··· + u +
1
16
a
2
=
1
16
u
23
+
1
16
u
22
+ ··· u
1
16
u
a
1
=
u
u
3
+ u
a
6
=
1
16
u
24
1
16
u
23
+ ··· +
1
16
u + 1
u
2
a
9
=
9
16
u
24
5
8
u
23
+ ··· +
11
16
u +
15
16
1
16
u
24
+
1
16
u
23
+ ··· + u
2
1
16
u
a
11
=
u
u
a
10
=
1
16
u
23
+
1
16
u
22
+ ··· + u
1
16
0.0625000u
24
+ 0.500000u
23
+ ··· + 0.937500u + 0.562500
a
5
=
1.18750u
24
1.81250u
23
+ ··· + 0.812500u + 0.625000
0.625000u
24
+ 1.43750u
23
+ ··· + 0.625000u + 1.18750
(ii) Obstruction class = 1
(iii) Cusp Shapes =
9
4
u
24
15
8
u
23
+ ··· + u
19
8
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
25
+ 7u
24
+ ··· + 6u + 1
c
2
, c
6
, c
7
c
11
, c
12
u
25
u
24
+ ··· + 3u
2
1
c
3
u
25
+ 3u
24
+ ··· 688u 178
c
4
, c
5
, c
9
u
25
3u
24
+ ··· 5u
2
2
c
8
, c
10
u
25
+ 9u
24
+ ··· + 92u + 14
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
25
+ 33y
24
+ ··· + 2y 1
c
2
, c
6
, c
7
c
11
, c
12
y
25
7y
24
+ ··· + 6y 1
c
3
y
25
9y
24
+ ··· 428404y 31684
c
4
, c
5
, c
9
y
25
21y
24
+ ··· 20y 4
c
8
, c
10
y
25
+ 15y
24
+ ··· 244y 196
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.785518 + 0.372640I
a = 0.62353 2.12777I
b = 0.785518 + 0.372640I
2.17521 + 5.68827I 0.75349 8.49425I
u = 0.785518 0.372640I
a = 0.62353 + 2.12777I
b = 0.785518 0.372640I
2.17521 5.68827I 0.75349 + 8.49425I
u = 0.755648 + 0.329653I
a = 0.90101 2.06111I
b = 0.755648 + 0.329653I
6.02340 1.36429I 4.30078 + 5.12755I
u = 0.755648 0.329653I
a = 0.90101 + 2.06111I
b = 0.755648 0.329653I
6.02340 + 1.36429I 4.30078 5.12755I
u = 0.845914 + 0.820525I
a = 0.231288 1.378290I
b = 0.845914 + 0.820525I
1.53021 + 1.97230I 1.25071 1.01903I
u = 0.845914 0.820525I
a = 0.231288 + 1.378290I
b = 0.845914 0.820525I
1.53021 1.97230I 1.25071 + 1.01903I
u = 0.265507 + 0.770529I
a = 0.071679 1.030960I
b = 0.265507 + 0.770529I
4.72198 3.16963I 6.44572 + 4.63465I
u = 0.265507 0.770529I
a = 0.071679 + 1.030960I
b = 0.265507 0.770529I
4.72198 + 3.16963I 6.44572 4.63465I
u = 0.730832 + 0.286998I
a = 1.17630 1.94700I
b = 0.730832 + 0.286998I
2.02761 2.93831I 0.12922 1.80135I
u = 0.730832 0.286998I
a = 1.17630 + 1.94700I
b = 0.730832 0.286998I
2.02761 + 2.93831I 0.12922 + 1.80135I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.964582 + 0.777415I
a = 0.38162 1.45780I
b = 0.964582 + 0.777415I
3.01562 5.74190I 0.65811 + 6.60844I
u = 0.964582 0.777415I
a = 0.38162 + 1.45780I
b = 0.964582 0.777415I
3.01562 + 5.74190I 0.65811 6.60844I
u = 0.834411 + 0.917128I
a = 0.245471 1.273980I
b = 0.834411 + 0.917128I
6.70653 + 1.49728I 3.61002 0.12989I
u = 0.834411 0.917128I
a = 0.245471 + 1.273980I
b = 0.834411 0.917128I
6.70653 1.49728I 3.61002 + 0.12989I
u = 1.075630 + 0.727569I
a = 0.57040 1.51015I
b = 1.075630 + 0.727569I
2.19442 6.05278I 0.77143 + 3.74618I
u = 1.075630 0.727569I
a = 0.57040 + 1.51015I
b = 1.075630 0.727569I
2.19442 + 6.05278I 0.77143 3.74618I
u = 1.129150 + 0.745345I
a = 0.64410 1.44902I
b = 1.129150 + 0.745345I
0.44383 + 10.34840I 3.77176 7.45516I
u = 1.129150 0.745345I
a = 0.64410 + 1.44902I
b = 1.129150 0.745345I
0.44383 10.34840I 3.77176 + 7.45516I
u = 1.040970 + 0.866286I
a = 0.469635 1.328000I
b = 1.040970 + 0.866286I
9.76977 + 6.71873I 4.67666 4.93521I
u = 1.040970 0.866286I
a = 0.469635 + 1.328000I
b = 1.040970 0.866286I
9.76977 6.71873I 4.67666 + 4.93521I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.156880 + 0.765655I
a = 0.66857 1.39962I
b = 1.156880 + 0.765655I
4.4401 14.5092I 0.55817 + 8.79115I
u = 1.156880 0.765655I
a = 0.66857 + 1.39962I
b = 1.156880 0.765655I
4.4401 + 14.5092I 0.55817 8.79115I
u = 0.260838 + 0.456783I
a = 0.277904 0.859001I
b = 0.260838 + 0.456783I
0.037229 + 0.975136I 0.76804 7.07893I
u = 0.260838 0.456783I
a = 0.277904 + 0.859001I
b = 0.260838 0.456783I
0.037229 0.975136I 0.76804 + 7.07893I
u = 0.481143
a = 1.25216
b = 0.481143
2.56662 2.00450
7
II. I
u
2
= h−3.63 × 10
13
u
29
+ 3.95 × 10
13
u
28
+ · · · + 2.20 × 10
15
b 1.12 ×
10
15
, u
29
+ u
28
+ · · · + 7a 6, u
30
u
29
+ · · · + 6u + 7i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
3
=
1
7
u
29
1
7
u
28
+ ···
76
7
u +
6
7
0.0165086u
29
0.0179368u
28
+ ··· 3.56720u + 0.508767
a
8
=
1
u
2
a
4
=
0.159366u
29
0.160794u
28
+ ··· 13.4243u + 1.36591
0.139320u
29
0.0522821u
28
+ ··· 3.67419u + 0.518764
a
2
=
0.159366u
29
0.160794u
28
+ ··· 14.4243u + 1.36591
0.0165086u
29
0.0179368u
28
+ ··· 3.56720u + 0.508767
a
1
=
u
u
3
+ u
a
6
=
0.0741092u
29
+ 0.213429u
28
+ ··· + 2.77558u 4.11884
0.00142820u
29
+ 0.124240u
28
+ ··· + 0.409715u 1.11556
a
9
=
0.156177u
29
+ 0.104902u
28
+ ··· + 1.37289u 3.42762
0.173390u
29
+ 0.0449879u
28
+ ··· + 0.143610u 0.680215
a
11
=
u
u
a
10
=
0.0971736u
29
0.270564u
28
+ ··· 12.6008u + 0.726652
0.0512747u
29
0.0842981u
28
+ ··· 2.49055u + 1.09324
a
5
=
0.167585u
29
0.278986u
28
+ ··· 14.6020u 3.43422
0.446571u
29
0.0855200u
28
+ ··· 2.42870u + 1.17310
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
2576715548071340
2200950009156001
u
29
754152713873936
2200950009156001
u
28
+ ··· +
5415273681221840
2200950009156001
u +
25651780906655686
2200950009156001
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
30
+ 13u
29
+ ··· + 1100u + 49
c
2
, c
6
, c
7
c
11
, c
12
u
30
u
29
+ ··· + 6u + 7
c
3
(u
15
u
14
+ ··· 2u 1)
2
c
4
, c
5
, c
9
(u
15
+ u
14
+ ··· 2u 1)
2
c
8
, c
10
(u
15
3u
14
+ ··· + 4u
2
1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
30
+ 7y
29
+ ··· 441680y + 2401
c
2
, c
6
, c
7
c
11
, c
12
y
30
13y
29
+ ··· 1100y + 49
c
3
(y
15
17y
14
+ ··· + 8y 1)
2
c
4
, c
5
, c
9
(y
15
13y
14
+ ··· + 8y 1)
2
c
8
, c
10
(y
15
+ 7y
14
+ ··· + 8y 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.933632 + 0.405000I
a = 0.901456 + 0.391043I
b = 1.243160 + 0.162791I
1.99092 + 1.64925I 2.39367 0.16522I
u = 0.933632 0.405000I
a = 0.901456 0.391043I
b = 1.243160 0.162791I
1.99092 1.64925I 2.39367 + 0.16522I
u = 0.666225 + 0.833796I
a = 0.584884 + 0.731996I
b = 0.815806 0.779519I
3.47397 + 0.15908I 1.79403 + 0.85194I
u = 0.666225 0.833796I
a = 0.584884 0.731996I
b = 0.815806 + 0.779519I
3.47397 0.15908I 1.79403 0.85194I
u = 0.786352 + 0.445678I
a = 0.962512 + 0.545520I
b = 1.273190 + 0.075844I
5.46412 + 1.81248I 5.85619 4.33913I
u = 0.786352 0.445678I
a = 0.962512 0.545520I
b = 1.273190 0.075844I
5.46412 1.81248I 5.85619 + 4.33913I
u = 1.10731
a = 0.903090
b = 0.270107
2.23561 5.03940
u = 0.582390 + 0.944453I
a = 0.473038 + 0.767119I
b = 0.944169 0.806161I
1.23287 4.11725I 1.40312 + 3.71929I
u = 0.582390 0.944453I
a = 0.473038 0.767119I
b = 0.944169 + 0.806161I
1.23287 + 4.11725I 1.40312 3.71929I
u = 0.815806 + 0.779519I
a = 0.640758 + 0.612257I
b = 0.666225 0.833796I
3.47397 0.15908I 1.79403 0.85194I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.815806 0.779519I
a = 0.640758 0.612257I
b = 0.666225 + 0.833796I
3.47397 + 0.15908I 1.79403 + 0.85194I
u = 0.689418 + 0.518899I
a = 0.925949 + 0.696926I
b = 1.305660 + 0.019757I
1.10658 5.45324I 0.00468 + 6.35130I
u = 0.689418 0.518899I
a = 0.925949 0.696926I
b = 1.305660 0.019757I
1.10658 + 5.45324I 0.00468 6.35130I
u = 1.13884
a = 0.878083
b = 0.734573
2.69194 4.62820
u = 0.583255 + 1.014300I
a = 0.426049 + 0.740911I
b = 0.987724 0.853962I
6.22908 + 8.01682I 3.04132 4.89679I
u = 0.583255 1.014300I
a = 0.426049 0.740911I
b = 0.987724 + 0.853962I
6.22908 8.01682I 3.04132 + 4.89679I
u = 0.944169 + 0.806161I
a = 0.612560 + 0.523023I
b = 0.582390 0.944453I
1.23287 + 4.11725I 1.40312 3.71929I
u = 0.944169 0.806161I
a = 0.612560 0.523023I
b = 0.582390 + 0.944453I
1.23287 4.11725I 1.40312 + 3.71929I
u = 1.243160 + 0.162791I
a = 0.790842 + 0.103561I
b = 0.933632 + 0.405000I
1.99092 + 1.64925I 2.39367 0.16522I
u = 1.243160 0.162791I
a = 0.790842 0.103561I
b = 0.933632 0.405000I
1.99092 1.64925I 2.39367 + 0.16522I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.803987 + 0.969115I
a = 0.507062 + 0.611206I
b = 0.803987 0.969115I
10.5121 5.97706 + 0.I
u = 0.803987 0.969115I
a = 0.507062 0.611206I
b = 0.803987 + 0.969115I
10.5121 5.97706 + 0.I
u = 0.734573
a = 1.36134
b = 1.13884
2.69194 4.62820
u = 1.273190 + 0.075844I
a = 0.782653 + 0.046623I
b = 0.786352 + 0.445678I
5.46412 + 1.81248I 5.85619 4.33913I
u = 1.273190 0.075844I
a = 0.782653 0.046623I
b = 0.786352 0.445678I
5.46412 1.81248I 5.85619 + 4.33913I
u = 0.987724 + 0.853962I
a = 0.579361 + 0.500902I
b = 0.583255 1.014300I
6.22908 8.01682I 3.04132 + 4.89679I
u = 0.987724 0.853962I
a = 0.579361 0.500902I
b = 0.583255 + 1.014300I
6.22908 + 8.01682I 3.04132 4.89679I
u = 1.305660 + 0.019757I
a = 0.765721 + 0.011587I
b = 0.689418 + 0.518899I
1.10658 5.45324I 0.00468 + 6.35130I
u = 1.305660 0.019757I
a = 0.765721 0.011587I
b = 0.689418 0.518899I
1.10658 + 5.45324I 0.00468 6.35130I
u = 0.270107
a = 3.70223
b = 1.10731
2.23561 5.03940
13
III. I
u
3
= hb + 1, a
4
+ 4a
3
+ 9a
2
+ 10a + 7, u 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
1
a
3
=
a
1
a
8
=
1
1
a
4
=
1
a 2
a
2
=
a 1
1
a
1
=
1
0
a
6
=
a
1
a
9
=
a
2
+ a + 1
a
a
11
=
1
1
a
10
=
a + 2
a
2
+ 3a + 3
a
5
=
a
3
+ a
2
+ a 3
a
3
5a
2
9a 9
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a
2
8a 16
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
(u 1)
4
c
3
, c
8
, c
10
u
4
+ 3u
2
+ 3
c
4
, c
5
, c
9
u
4
3u
2
+ 3
c
6
, c
11
, c
12
(u + 1)
4
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
(y 1)
4
c
3
, c
8
, c
10
(y
2
+ 3y + 3)
2
c
4
, c
5
, c
9
(y
2
3y + 3)
2
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.65937 + 1.27123I
b = 1.00000
3.28987 + 4.05977I 6.00000 3.46410I
u = 1.00000
a = 0.65937 1.27123I
b = 1.00000
3.28987 4.05977I 6.00000 + 3.46410I
u = 1.00000
a = 1.34063 + 1.27123I
b = 1.00000
3.28987 4.05977I 6.00000 + 3.46410I
u = 1.00000
a = 1.34063 1.27123I
b = 1.00000
3.28987 + 4.05977I 6.00000 3.46410I
17
IV. I
u
4
= hb 1, a
4
4a
3
+ 7a
2
6a + 1, u + 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
1
a
3
=
a
1
a
8
=
1
1
a
4
=
1
a + 2
a
2
=
a + 1
1
a
1
=
1
0
a
6
=
a
1
a
9
=
a
2
a + 1
a
a
11
=
1
1
a
10
=
a 2
a
2
+ 3a 3
a
5
=
a
3
+ 3a
2
5a + 3
a
3
+ 3a
2
5a + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a
2
8a
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
11
c
12
(u 1)
4
c
2
, c
7
(u + 1)
4
c
3
, c
8
, c
10
u
4
+ u
2
1
c
4
, c
5
, c
9
u
4
u
2
1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
(y 1)
4
c
3
, c
8
, c
10
(y
2
+ y 1)
2
c
4
, c
5
, c
9
(y
2
y 1)
2
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000 + 1.27202I
b = 1.00000
7.23771 10.47214 + 0.I
u = 1.00000
a = 1.00000 1.27202I
b = 1.00000
7.23771 10.47214 + 0.I
u = 1.00000
a = 1.78615
b = 1.00000
0.657974 1.52790
u = 1.00000
a = 0.213849
b = 1.00000
0.657974 1.52790
21
V. I
u
5
= hb + 1, a + 1, u 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
1
a
3
=
1
1
a
8
=
1
1
a
4
=
1
1
a
2
=
2
1
a
1
=
1
0
a
6
=
1
1
a
9
=
1
1
a
11
=
1
1
a
10
=
1
1
a
5
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
u 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
c
6
, c
11
, c
12
u + 1
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
y 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
3.28987 12.0000
25
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
9
)(u
25
+ 7u
24
+ ··· + 6u + 1)(u
30
+ 13u
29
+ ··· + 1100u + 49)
c
2
, c
7
((u 1)
5
)(u + 1)
4
(u
25
u
24
+ ··· + 3u
2
1)(u
30
u
29
+ ··· + 6u + 7)
c
3
u(u
4
+ u
2
1)(u
4
+ 3u
2
+ 3)(u
15
u
14
+ ··· 2u 1)
2
· (u
25
+ 3u
24
+ ··· 688u 178)
c
4
, c
5
, c
9
u(u
4
3u
2
+ 3)(u
4
u
2
1)(u
15
+ u
14
+ ··· 2u 1)
2
· (u
25
3u
24
+ ··· 5u
2
2)
c
6
, c
11
, c
12
((u 1)
4
)(u + 1)
5
(u
25
u
24
+ ··· + 3u
2
1)(u
30
u
29
+ ··· + 6u + 7)
c
8
, c
10
u(u
4
+ u
2
1)(u
4
+ 3u
2
+ 3)(u
15
3u
14
+ ··· + 4u
2
1)
2
· (u
25
+ 9u
24
+ ··· + 92u + 14)
26
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
9
)(y
25
+ 33y
24
+ ··· + 2y 1)
· (y
30
+ 7y
29
+ ··· 441680y + 2401)
c
2
, c
6
, c
7
c
11
, c
12
((y 1)
9
)(y
25
7y
24
+ ··· + 6y 1)(y
30
13y
29
+ ··· 1100y + 49)
c
3
y(y
2
+ y 1)
2
(y
2
+ 3y + 3)
2
(y
15
17y
14
+ ··· + 8y 1)
2
· (y
25
9y
24
+ ··· 428404y 31684)
c
4
, c
5
, c
9
y(y
2
3y + 3)
2
(y
2
y 1)
2
(y
15
13y
14
+ ··· + 8y 1)
2
· (y
25
21y
24
+ ··· 20y 4)
c
8
, c
10
y(y
2
+ y 1)
2
(y
2
+ 3y + 3)
2
(y
15
+ 7y
14
+ ··· + 8y 1)
2
· (y
25
+ 15y
24
+ ··· 244y 196)
27