12n
0580
(K12n
0580
)
A knot diagram
1
Linearized knot diagam
3 7 12 11 10 2 6 12 3 5 8 10
Solving Sequence
2,7
3 1 6
8,10
5 9 12 4 11
c
2
c
1
c
6
c
7
c
5
c
9
c
12
c
3
c
11
c
4
, c
8
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−3u
20
+ 14u
19
+ ··· + 2b 4, u
20
+ 3u
19
+ ··· + 2a + 3, u
21
6u
20
+ ··· + 26u 4i
I
u
2
= h−463u
5
a
3
277u
5
a
2
+ ··· 1475a 789, u
5
a
3
2u
5
a
2
+ ··· 2a + 6, u
6
+ u
5
u
4
2u
3
+ u + 1i
I
u
3
= h−u
11
+ 2u
9
u
8
5u
7
+ u
6
+ 5u
5
2u
4
5u
3
+ u
2
+ b + u,
u
10
+ 2u
8
u
7
5u
6
+ u
5
+ 5u
4
2u
3
5u
2
+ a + u + 1,
u
13
u
12
2u
11
+ 3u
10
+ 4u
9
6u
8
4u
7
+ 8u
6
+ 3u
5
7u
4
+ 3u
2
1i
* 3 irreducible components of dim
C
= 0, with total 58 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−3u
20
+14u
19
+· · ·+2b4, u
20
+3u
19
+· · ·+2a+3, u
21
6u
20
+· · ·+26u4i
(i) Arc colorings
a
2
=
1
0
a
7
=
0
u
a
3
=
1
u
2
a
1
=
u
2
+ 1
u
4
a
6
=
u
u
a
8
=
u
3
u
3
+ u
a
10
=
1
2
u
20
3
2
u
19
+ ··· + 13u
3
2
3
2
u
20
7u
19
+ ···
29
2
u + 2
a
5
=
1
4
u
20
+ 3u
19
+ ··· +
79
4
u 4
3
2
u
20
5u
19
+ ··· +
7
2
u 1
a
9
=
u
20
9
2
u
19
+ ···
19
2
u +
5
2
3
2
u
20
6u
19
+ ···
25
2
u + 2
a
12
=
7
4
u
20
7u
19
+ ···
21
4
u + 2
7
2
u
20
16u
19
+ ···
89
2
u + 7
a
4
=
u
20
5
2
u
19
+ ··· +
25
2
u
3
2
3
2
u
20
6u
19
+ ···
25
2
u + 2
a
11
=
15
4
u
20
14u
19
+ ··· +
35
4
u 2
17
2
u
20
40u
19
+ ···
221
2
u + 17
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 3u
20
+ 15u
19
25u
18
10u
17
+ 97u
16
118u
15
47u
14
+ 243u
13
133u
12
247u
11
+
362u
10
+ 66u
9
512u
8
+ 368u
7
+ 162u
6
389u
5
+ 165u
4
+ 104u
3
120u
2
+ 34u + 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
21
+ 8u
20
+ ··· + 188u + 16
c
2
, c
6
u
21
6u
20
+ ··· + 26u 4
c
3
u
21
2u
20
+ ··· + 5u 1
c
4
, c
5
, c
9
c
10
u
21
+ 13u
19
+ ··· + u 1
c
8
, c
11
u
21
16u
20
+ ··· + 480u 64
c
12
u
21
3u
20
+ ··· 11u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
21
+ 12y
20
+ ··· + 9072y 256
c
2
, c
6
y
21
8y
20
+ ··· + 188y 16
c
3
y
21
36y
20
+ ··· + 47y 1
c
4
, c
5
, c
9
c
10
y
21
+ 26y
20
+ ··· y 1
c
8
, c
11
y
21
6y
20
+ ··· 7168y 4096
c
12
y
21
+ 33y
20
+ ··· + 43y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.935175 + 0.517534I
a = 1.110460 0.861684I
b = 0.59252 1.38052I
0.24926 3.91469I 2.72764 + 7.21725I
u = 0.935175 0.517534I
a = 1.110460 + 0.861684I
b = 0.59252 + 1.38052I
0.24926 + 3.91469I 2.72764 7.21725I
u = 0.448329 + 0.989827I
a = 0.363224 1.287660I
b = 1.11171 0.93682I
10.43170 + 7.68453I 0.20664 3.05097I
u = 0.448329 0.989827I
a = 0.363224 + 1.287660I
b = 1.11171 + 0.93682I
10.43170 7.68453I 0.20664 + 3.05097I
u = 0.528861 + 1.017090I
a = 0.085943 + 1.202340I
b = 1.268340 + 0.548462I
9.86050 1.84914I 0.90690 + 1.69467I
u = 0.528861 1.017090I
a = 0.085943 1.202340I
b = 1.268340 0.548462I
9.86050 + 1.84914I 0.90690 1.69467I
u = 0.821760 + 0.209360I
a = 0.270782 0.182803I
b = 0.184246 + 0.206911I
1.40817 + 0.64438I 3.79274 1.22685I
u = 0.821760 0.209360I
a = 0.270782 + 0.182803I
b = 0.184246 0.206911I
1.40817 0.64438I 3.79274 + 1.22685I
u = 0.896473 + 0.746587I
a = 0.309151 + 0.124372I
b = 0.184291 0.342305I
4.28731 + 2.84851I 0.39482 1.73871I
u = 0.896473 0.746587I
a = 0.309151 0.124372I
b = 0.184291 + 0.342305I
4.28731 2.84851I 0.39482 + 1.73871I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.677418 + 0.397216I
a = 1.51417 + 0.36850I
b = 0.879349 + 0.851081I
1.096940 0.102856I 7.06481 + 1.59045I
u = 0.677418 0.397216I
a = 1.51417 0.36850I
b = 0.879349 0.851081I
1.096940 + 0.102856I 7.06481 1.59045I
u = 0.904796 + 0.829662I
a = 0.401041 0.496617I
b = 0.774885 0.116608I
4.71470 3.09578I 3.27109 + 3.56536I
u = 0.904796 0.829662I
a = 0.401041 + 0.496617I
b = 0.774885 + 0.116608I
4.71470 + 3.09578I 3.27109 3.56536I
u = 1.327590 + 0.030849I
a = 0.070884 + 0.549935I
b = 0.077139 0.732274I
17.1548 4.6029I 4.70163 + 2.09700I
u = 1.327590 0.030849I
a = 0.070884 0.549935I
b = 0.077139 + 0.732274I
17.1548 + 4.6029I 4.70163 2.09700I
u = 1.176180 + 0.678965I
a = 1.80081 0.07045I
b = 2.16591 + 1.13982I
12.7012 13.7507I 1.99835 + 6.85375I
u = 1.176180 0.678965I
a = 1.80081 + 0.07045I
b = 2.16591 1.13982I
12.7012 + 13.7507I 1.99835 6.85375I
u = 1.175240 + 0.726178I
a = 1.45480 + 0.41477I
b = 2.01093 0.56899I
11.89320 4.50624I 2.44659 + 2.53964I
u = 1.175240 0.726178I
a = 1.45480 0.41477I
b = 2.01093 + 0.56899I
11.89320 + 4.50624I 2.44659 2.53964I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.399649
a = 1.81531
b = 0.725488
0.927006 12.2730
7
II. I
u
2
= h−463u
5
a
3
277u
5
a
2
+ · · · 1475a 789, u
5
a
3
2u
5
a
2
+ · · ·
2a + 6, u
6
+ u
5
u
4
2u
3
+ u + 1i
(i) Arc colorings
a
2
=
1
0
a
7
=
0
u
a
3
=
1
u
2
a
1
=
u
2
+ 1
u
4
a
6
=
u
u
a
8
=
u
3
u
3
+ u
a
10
=
a
0.246670a
3
u
5
+ 0.147576a
2
u
5
+ ··· + 0.785828a + 0.420352
a
5
=
0.161961a
3
u
5
0.461907a
2
u
5
+ ··· 0.777304a 0.0340970
0.621204a
3
u
5
1.02824a
2
u
5
+ ··· + 0.604156a 1.49920
a
9
=
0.246670a
3
u
5
0.147576a
2
u
5
+ ··· + 0.214172a 0.420352
0.0223761a
3
u
5
0.728290a
2
u
5
+ ··· + 1.28077a + 0.784763
a
12
=
0.247736a
3
u
5
0.420352a
2
u
5
+ ··· + 0.465637a + 0.474161
0.656367a
3
u
5
0.0298348a
2
u
5
+ ··· 0.0974960a 2.98029
a
4
=
0.134790a
3
u
5
+ 0.506127a
2
u
5
+ ··· + 0.189664a + 1.34417
1.31700a
3
u
5
0.849227a
2
u
5
+ ··· + 1.18913a + 5.38253
a
11
=
0.228556a
3
u
5
0.510389a
2
u
5
+ ··· 0.0607352a + 0.372936
0.983484a
3
u
5
0.771977a
2
u
5
+ ··· + 0.102291a 3.36494
(ii) Obstruction class = 1
(iii) Cusp Shapes =
808
1877
u
5
a
3
+
4132
1877
u
5
a
2
+ ···
2988
1877
a
6350
1877
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
4
c
2
, c
6
(u
6
+ u
5
u
4
2u
3
+ u + 1)
4
c
3
u
24
3u
23
+ ··· + 54u + 43
c
4
, c
5
, c
9
c
10
u
24
u
23
+ ··· + 148u + 43
c
8
, c
11
(u
2
+ u + 1)
12
c
12
u
24
+ 9u
23
+ ··· + 376u + 229
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
4
c
2
, c
6
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
4
c
3
y
24
33y
23
+ ··· 52280y + 1849
c
4
, c
5
, c
9
c
10
y
24
+ 27y
23
+ ··· + 36576y + 1849
c
8
, c
11
(y
2
+ y + 1)
12
c
12
y
24
+ 27y
23
+ ··· + 65640y + 52441
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.002190 + 0.295542I
a = 1.050380 + 0.369608I
b = 1.20802 1.30034I
6.82541 2.95419I 5.71672 + 4.25833I
u = 1.002190 + 0.295542I
a = 0.081771 + 0.727533I
b = 0.40776 + 1.96764I
6.82541 + 1.10558I 5.71672 2.66988I
u = 1.002190 + 0.295542I
a = 1.46095 0.86667I
b = 1.161920 + 0.059986I
6.82541 2.95419I 5.71672 + 4.25833I
u = 1.002190 + 0.295542I
a = 0.90697 + 1.69587I
b = 0.296966 + 0.704962I
6.82541 + 1.10558I 5.71672 2.66988I
u = 1.002190 0.295542I
a = 1.050380 0.369608I
b = 1.20802 + 1.30034I
6.82541 + 2.95419I 5.71672 4.25833I
u = 1.002190 0.295542I
a = 0.081771 0.727533I
b = 0.40776 1.96764I
6.82541 1.10558I 5.71672 + 2.66988I
u = 1.002190 0.295542I
a = 1.46095 + 0.86667I
b = 1.161920 0.059986I
6.82541 + 2.95419I 5.71672 4.25833I
u = 1.002190 0.295542I
a = 0.90697 1.69587I
b = 0.296966 0.704962I
6.82541 1.10558I 5.71672 + 2.66988I
u = 0.428243 + 0.664531I
a = 0.820716 0.925536I
b = 0.50645 1.55897I
3.04420 2.95419I 1.71672 + 4.25833I
u = 0.428243 + 0.664531I
a = 0.481772 1.278420I
b = 1.056330 0.348684I
3.04420 + 1.10558I 1.71672 2.66988I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.428243 + 0.664531I
a = 0.353054 + 1.362070I
b = 0.643235 + 0.867628I
3.04420 + 1.10558I 1.71672 2.66988I
u = 0.428243 + 0.664531I
a = 1.31057 + 1.60669I
b = 0.263581 + 0.941746I
3.04420 2.95419I 1.71672 + 4.25833I
u = 0.428243 0.664531I
a = 0.820716 + 0.925536I
b = 0.50645 + 1.55897I
3.04420 + 2.95419I 1.71672 4.25833I
u = 0.428243 0.664531I
a = 0.481772 + 1.278420I
b = 1.056330 + 0.348684I
3.04420 1.10558I 1.71672 + 2.66988I
u = 0.428243 0.664531I
a = 0.353054 1.362070I
b = 0.643235 0.867628I
3.04420 1.10558I 1.71672 + 2.66988I
u = 0.428243 0.664531I
a = 1.31057 1.60669I
b = 0.263581 0.941746I
3.04420 + 2.95419I 1.71672 4.25833I
u = 1.073950 + 0.558752I
a = 1.35473 0.44637I
b = 1.82694 + 0.82770I
4.93480 + 3.66314I 2.00000 2.04647I
u = 1.073950 + 0.558752I
a = 1.65432 + 0.08999I
b = 1.70432 0.27758I
4.93480 + 3.66314I 2.00000 2.04647I
u = 1.073950 + 0.558752I
a = 1.65472 0.61469I
b = 1.97136 1.75360I
4.93480 + 7.72290I 2.00000 8.97467I
u = 1.073950 + 0.558752I
a = 2.11314 + 0.53343I
b = 1.43363 + 1.58473I
4.93480 + 7.72290I 2.00000 8.97467I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.073950 0.558752I
a = 1.35473 + 0.44637I
b = 1.82694 0.82770I
4.93480 3.66314I 2.00000 + 2.04647I
u = 1.073950 0.558752I
a = 1.65432 0.08999I
b = 1.70432 + 0.27758I
4.93480 3.66314I 2.00000 + 2.04647I
u = 1.073950 0.558752I
a = 1.65472 + 0.61469I
b = 1.97136 + 1.75360I
4.93480 7.72290I 2.00000 + 8.97467I
u = 1.073950 0.558752I
a = 2.11314 0.53343I
b = 1.43363 1.58473I
4.93480 7.72290I 2.00000 + 8.97467I
13
III.
I
u
3
= h−u
11
+2u
9
+· · ·+b+u, u
10
+2u
8
+· · ·+a+1, u
13
u
12
+· · ·+3u
2
1i
(i) Arc colorings
a
2
=
1
0
a
7
=
0
u
a
3
=
1
u
2
a
1
=
u
2
+ 1
u
4
a
6
=
u
u
a
8
=
u
3
u
3
+ u
a
10
=
u
10
2u
8
+ u
7
+ 5u
6
u
5
5u
4
+ 2u
3
+ 5u
2
u 1
u
11
2u
9
+ u
8
+ 5u
7
u
6
5u
5
+ 2u
4
+ 5u
3
u
2
u
a
5
=
u
12
u
11
+ ··· + 4u 1
2u
12
+ 5u
10
u
9
11u
8
+ 2u
7
+ 14u
6
3u
5
13u
4
+ 3u
3
+ 6u
2
1
a
9
=
u
12
u
11
u
10
+ 3u
9
+ 2u
8
5u
7
+ u
6
+ 6u
5
2u
4
4u
3
+ 5u
2
1
u
11
2u
9
+ u
8
+ 4u
7
u
6
4u
5
+ 2u
4
+ 3u
3
u
2
a
12
=
u
12
3u
10
+ 7u
8
10u
6
+ 11u
4
+ u
3
7u
2
+ 3
u
12
u
11
+ ··· + 2u + 1
a
4
=
u
11
+ u
10
+ 2u
9
4u
8
4u
7
+ 7u
6
+ 4u
5
10u
4
3u
3
+ 8u
2
+ u 2
u
12
+ u
11
+ ··· 2u 1
a
11
=
u
12
3u
10
+ 7u
8
11u
6
+ 12u
4
+ u
3
8u
2
+ 3
u
12
u
11
+ ··· + 2u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= u
12
3u
11
+ 4u
10
+ 4u
9
9u
8
11u
7
+ 15u
6
+ 9u
5
18u
4
6u
3
+ 13u
2
3u 5
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
13
5u
12
+ ··· + 6u 1
c
2
u
13
u
12
2u
11
+ 3u
10
+ 4u
9
6u
8
4u
7
+ 8u
6
+ 3u
5
7u
4
+ 3u
2
1
c
3
u
13
+ 2u
12
+ ··· + 9u + 3
c
4
, c
5
, c
9
u
13
+ 8u
11
+ ··· + 5u + 1
c
6
u
13
+ u
12
2u
11
3u
10
+ 4u
9
+ 6u
8
4u
7
8u
6
+ 3u
5
+ 7u
4
3u
2
+ 1
c
7
u
13
+ 5u
12
+ ··· + 6u + 1
c
8
u
13
3u
12
+ ··· 3u + 1
c
10
u
13
+ 8u
11
+ ··· + 5u 1
c
11
u
13
+ 3u
12
+ ··· 3u 1
c
12
u
13
+ 3u
12
+ ··· 3u 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
13
+ 11y
12
+ ··· 10y 1
c
2
, c
6
y
13
5y
12
+ ··· + 6y 1
c
3
y
13
6y
12
+ ··· + 39y 9
c
4
, c
5
, c
9
c
10
y
13
+ 16y
12
+ ··· + 7y 1
c
8
, c
11
y
13
7y
12
+ ··· 3y 1
c
12
y
13
+ 3y
12
+ ··· + 7y 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.033900 + 0.364048I
a = 0.445935 0.499626I
b = 0.279166 + 0.678907I
6.67636 + 0.41487I 4.61704 2.68258I
u = 1.033900 0.364048I
a = 0.445935 + 0.499626I
b = 0.279166 0.678907I
6.67636 0.41487I 4.61704 + 2.68258I
u = 0.628298 + 0.593066I
a = 0.21176 + 2.10347I
b = 1.11445 + 1.44719I
4.07671 + 1.23383I 1.69190 0.17539I
u = 0.628298 0.593066I
a = 0.21176 2.10347I
b = 1.11445 1.44719I
4.07671 1.23383I 1.69190 + 0.17539I
u = 1.032670 + 0.557375I
a = 2.14778 + 0.03860I
b = 2.23946 1.15726I
5.39322 5.84865I 3.49346 + 5.41334I
u = 1.032670 0.557375I
a = 2.14778 0.03860I
b = 2.23946 + 1.15726I
5.39322 + 5.84865I 3.49346 5.41334I
u = 0.815001
a = 1.46736
b = 1.19590
0.406093 5.99710
u = 0.899575 + 0.799634I
a = 0.180212 + 0.063376I
b = 0.111437 0.201115I
5.29164 + 3.00519I 11.80568 1.98854I
u = 0.899575 0.799634I
a = 0.180212 0.063376I
b = 0.111437 + 0.201115I
5.29164 3.00519I 11.80568 + 1.98854I
u = 0.917844 + 0.874021I
a = 0.756497 0.845675I
b = 1.43348 0.11500I
2.41795 3.23180I 1.51049 + 2.95825I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.917844 0.874021I
a = 0.756497 + 0.845675I
b = 1.43348 + 0.11500I
2.41795 + 3.23180I 1.51049 2.95825I
u = 0.552837 + 0.348261I
a = 0.680116 1.051500I
b = 0.009797 + 0.818166I
4.92582 + 2.64511I 0.50575 4.47671I
u = 0.552837 0.348261I
a = 0.680116 + 1.051500I
b = 0.009797 0.818166I
4.92582 2.64511I 0.50575 + 4.47671I
18
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
4
)(u
13
5u
12
+ ··· + 6u 1)
· (u
21
+ 8u
20
+ ··· + 188u + 16)
c
2
(u
6
+ u
5
u
4
2u
3
+ u + 1)
4
· (u
13
u
12
2u
11
+ 3u
10
+ 4u
9
6u
8
4u
7
+ 8u
6
+ 3u
5
7u
4
+ 3u
2
1)
· (u
21
6u
20
+ ··· + 26u 4)
c
3
(u
13
+ 2u
12
+ ··· + 9u + 3)(u
21
2u
20
+ ··· + 5u 1)
· (u
24
3u
23
+ ··· + 54u + 43)
c
4
, c
5
, c
9
(u
13
+ 8u
11
+ ··· + 5u + 1)(u
21
+ 13u
19
+ ··· + u 1)
· (u
24
u
23
+ ··· + 148u + 43)
c
6
(u
6
+ u
5
u
4
2u
3
+ u + 1)
4
· (u
13
+ u
12
2u
11
3u
10
+ 4u
9
+ 6u
8
4u
7
8u
6
+ 3u
5
+ 7u
4
3u
2
+ 1)
· (u
21
6u
20
+ ··· + 26u 4)
c
7
((u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
4
)(u
13
+ 5u
12
+ ··· + 6u + 1)
· (u
21
+ 8u
20
+ ··· + 188u + 16)
c
8
((u
2
+ u + 1)
12
)(u
13
3u
12
+ ··· 3u + 1)
· (u
21
16u
20
+ ··· + 480u 64)
c
10
(u
13
+ 8u
11
+ ··· + 5u 1)(u
21
+ 13u
19
+ ··· + u 1)
· (u
24
u
23
+ ··· + 148u + 43)
c
11
((u
2
+ u + 1)
12
)(u
13
+ 3u
12
+ ··· 3u 1)
· (u
21
16u
20
+ ··· + 480u 64)
c
12
(u
13
+ 3u
12
+ ··· 3u 1)(u
21
3u
20
+ ··· 11u 1)
· (u
24
+ 9u
23
+ ··· + 376u + 229)
19
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
((y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
4
)(y
13
+ 11y
12
+ ··· 10y 1)
· (y
21
+ 12y
20
+ ··· + 9072y 256)
c
2
, c
6
((y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
4
)(y
13
5y
12
+ ··· + 6y 1)
· (y
21
8y
20
+ ··· + 188y 16)
c
3
(y
13
6y
12
+ ··· + 39y 9)(y
21
36y
20
+ ··· + 47y 1)
· (y
24
33y
23
+ ··· 52280y + 1849)
c
4
, c
5
, c
9
c
10
(y
13
+ 16y
12
+ ··· + 7y 1)(y
21
+ 26y
20
+ ··· y 1)
· (y
24
+ 27y
23
+ ··· + 36576y + 1849)
c
8
, c
11
((y
2
+ y + 1)
12
)(y
13
7y
12
+ ··· 3y 1)
· (y
21
6y
20
+ ··· 7168y 4096)
c
12
(y
13
+ 3y
12
+ ··· + 7y 1)(y
21
+ 33y
20
+ ··· + 43y 1)
· (y
24
+ 27y
23
+ ··· + 65640y + 52441)
20