11a
17
(K11a
17
)
A knot diagram
1
Linearized knot diagam
4 1 6 2 8 3 10 5 11 7 9
Solving Sequence
7,10
8
3,11
6 4 5 9 1 2
c
7
c
10
c
6
c
3
c
5
c
9
c
11
c
2
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−5.94953 × 10
22
u
70
2.28036 × 10
23
u
69
+ ··· + 2.14833 × 10
22
b 2.53129 × 10
22
,
9.79183 × 10
20
u
70
+ 3.59725 × 10
22
u
69
+ ··· + 1.07416 × 10
22
a 8.03639 × 10
22
, u
71
+ 5u
70
+ ··· + 16u + 1i
I
u
2
= h−3a
2
u + 2a
2
4au + 7b + 5a u + 10, a
3
a
2
u + 2a
2
+ 3au a + 5u, u
2
u + 1i
I
u
3
= hb, u
3
2u
2
+ a 2u, u
4
+ u
3
+ u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 81 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−5.95 × 10
22
u
70
2.28 × 10
23
u
69
+ · · · + 2.15 × 10
22
b 2.53 ×
10
22
, 9.79 × 10
20
u
70
+ 3.60 × 10
22
u
69
+ · · · + 1.07 × 10
22
a 8.04 ×
10
22
, u
71
+ 5u
70
+ · · · + 16u + 1i
(i) Arc colorings
a
7
=
1
0
a
10
=
0
u
a
8
=
1
u
2
a
3
=
0.0911577u
70
3.34888u
69
+ ··· 37.5984u + 7.48153
2.76938u
70
+ 10.6146u
69
+ ··· + 12.1316u + 1.17826
a
11
=
u
u
a
6
=
4.02087u
70
+ 14.8653u
69
+ ··· + 22.0738u 2.91262
2.20047u
70
6.62609u
69
+ ··· + 2.44001u 0.00293030
a
4
=
4.91020u
70
23.2455u
69
+ ··· 75.9832u + 7.34450
5.57560u
70
+ 18.7187u
69
+ ··· 10.4341u 0.354339
a
5
=
8.28715u
70
+ 36.7438u
69
+ ··· + 99.4370u + 2.32932
8.83708u
70
30.6563u
69
+ ··· 10.5783u 0.549932
a
9
=
u
3
u
3
+ u
a
1
=
u
5
u
u
5
+ u
3
+ u
a
2
=
1.84442u
70
+ 6.91573u
69
+ ··· + 0.676442u + 9.99389
0.311963u
70
+ 1.82295u
69
+ ··· + 10.8155u + 1.16954
a
2
=
1.84442u
70
+ 6.91573u
69
+ ··· + 0.676442u + 9.99389
0.311963u
70
+ 1.82295u
69
+ ··· + 10.8155u + 1.16954
(ii) Obstruction class = 1
(iii) Cusp Shapes =
14007707892704021288689
10741642455012495551282
u
70
+
52903988225635842251755
10741642455012495551282
u
69
+ ··· +
406218822228831882964265
10741642455012495551282
u
31847081302722889929098
5370821227506247775641
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
71
7u
70
+ ··· 19u + 1
c
2
u
71
+ 35u
70
+ ··· + 91u + 1
c
3
, c
6
u
71
3u
70
+ ··· 72u + 16
c
5
, c
8
u
71
+ 2u
70
+ ··· + 224u + 64
c
7
, c
10
u
71
5u
70
+ ··· + 16u 1
c
9
, c
11
u
71
23u
70
+ ··· + 246u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
71
35y
70
+ ··· + 91y 1
c
2
y
71
+ 9y
70
+ ··· + 3279y 1
c
3
, c
6
y
71
+ 33y
70
+ ··· 4800y 256
c
5
, c
8
y
71
+ 40y
70
+ ··· 39936y 4096
c
7
, c
10
y
71
+ 23y
70
+ ··· + 246y 1
c
9
, c
11
y
71
+ 55y
70
+ ··· + 62490y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.469540 + 0.901499I
a = 2.34185 + 1.83693I
b = 0.440954 0.146276I
1.31688 1.88106I 31.3196 + 4.6871I
u = 0.469540 0.901499I
a = 2.34185 1.83693I
b = 0.440954 + 0.146276I
1.31688 + 1.88106I 31.3196 4.6871I
u = 0.703653 + 0.685371I
a = 0.410681 + 0.049842I
b = 0.285900 + 0.818152I
0.185937 1.104380I 1.16040 + 2.40265I
u = 0.703653 0.685371I
a = 0.410681 0.049842I
b = 0.285900 0.818152I
0.185937 + 1.104380I 1.16040 2.40265I
u = 0.066834 + 0.978657I
a = 0.76286 2.56276I
b = 0.149859 + 1.246530I
5.52736 0.93567I 4.64414 + 2.41235I
u = 0.066834 0.978657I
a = 0.76286 + 2.56276I
b = 0.149859 1.246530I
5.52736 + 0.93567I 4.64414 2.41235I
u = 0.199067 + 1.029270I
a = 0.844886 0.722840I
b = 0.903463 + 0.396432I
0.16872 3.86400I 0. + 6.04330I
u = 0.199067 1.029270I
a = 0.844886 + 0.722840I
b = 0.903463 0.396432I
0.16872 + 3.86400I 0. 6.04330I
u = 0.228246 + 0.913383I
a = 0.23825 + 3.38061I
b = 0.223038 0.668311I
1.01028 1.75385I 0.38756 + 7.39042I
u = 0.228246 0.913383I
a = 0.23825 3.38061I
b = 0.223038 + 0.668311I
1.01028 + 1.75385I 0.38756 7.39042I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.644181 + 0.840361I
a = 1.06472 1.25613I
b = 0.21087 + 1.49010I
2.18680 0.67401I 0
u = 0.644181 0.840361I
a = 1.06472 + 1.25613I
b = 0.21087 1.49010I
2.18680 + 0.67401I 0
u = 0.170132 + 0.914729I
a = 1.00662 + 2.47886I
b = 0.419700 1.267450I
4.39627 + 4.60339I 3.32762 2.73353I
u = 0.170132 0.914729I
a = 1.00662 2.47886I
b = 0.419700 + 1.267450I
4.39627 4.60339I 3.32762 + 2.73353I
u = 0.836021 + 0.673858I
a = 0.109662 0.484018I
b = 0.672234 + 1.164290I
2.39090 4.48377I 0
u = 0.836021 0.673858I
a = 0.109662 + 0.484018I
b = 0.672234 1.164290I
2.39090 + 4.48377I 0
u = 0.682896 + 0.834787I
a = 1.99324 0.92672I
b = 0.617687 + 0.601618I
3.08372 1.52053I 0
u = 0.682896 0.834787I
a = 1.99324 + 0.92672I
b = 0.617687 0.601618I
3.08372 + 1.52053I 0
u = 0.832336 + 0.724886I
a = 0.670615 0.613985I
b = 1.075770 + 0.627927I
6.99333 3.33145I 0
u = 0.832336 0.724886I
a = 0.670615 + 0.613985I
b = 1.075770 0.627927I
6.99333 + 3.33145I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.140143 + 1.101750I
a = 0.13050 2.45616I
b = 0.426470 + 1.144810I
4.31628 4.18567I 0
u = 0.140143 1.101750I
a = 0.13050 + 2.45616I
b = 0.426470 1.144810I
4.31628 + 4.18567I 0
u = 0.780059 + 0.792579I
a = 0.408945 + 0.711158I
b = 1.044280 0.406192I
4.75730 + 1.60644I 0
u = 0.780059 0.792579I
a = 0.408945 0.711158I
b = 1.044280 + 0.406192I
4.75730 1.60644I 0
u = 0.649958 + 0.906097I
a = 1.16875 + 1.58162I
b = 0.08760 1.49800I
2.40563 + 5.71061I 0
u = 0.649958 0.906097I
a = 1.16875 1.58162I
b = 0.08760 + 1.49800I
2.40563 5.71061I 0
u = 0.819648 + 0.758949I
a = 0.202166 + 0.947127I
b = 0.555895 1.022590I
7.65318 0.42476I 0
u = 0.819648 0.758949I
a = 0.202166 0.947127I
b = 0.555895 + 1.022590I
7.65318 + 0.42476I 0
u = 0.892301 + 0.672315I
a = 0.295771 + 0.358689I
b = 0.776807 1.153330I
5.27544 10.02070I 0
u = 0.892301 0.672315I
a = 0.295771 0.358689I
b = 0.776807 + 1.153330I
5.27544 + 10.02070I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.809277 + 0.772791I
a = 0.335402 0.318821I
b = 0.572324 0.999549I
1.88125 + 3.19322I 0
u = 0.809277 0.772791I
a = 0.335402 + 0.318821I
b = 0.572324 + 0.999549I
1.88125 3.19322I 0
u = 0.684814 + 0.898763I
a = 0.736483 0.552503I
b = 0.770057 0.536295I
2.88221 3.75765I 0
u = 0.684814 0.898763I
a = 0.736483 + 0.552503I
b = 0.770057 + 0.536295I
2.88221 + 3.75765I 0
u = 0.063523 + 0.862035I
a = 0.858693 + 0.495191I
b = 0.869259 + 0.100924I
0.623561 0.155557I 0.0220175 0.0069970I
u = 0.063523 0.862035I
a = 0.858693 0.495191I
b = 0.869259 0.100924I
0.623561 + 0.155557I 0.0220175 + 0.0069970I
u = 0.825029 + 0.180514I
a = 0.358331 + 0.374895I
b = 0.613697 1.017340I
2.42985 6.27823I 7.32031 + 6.32359I
u = 0.825029 0.180514I
a = 0.358331 0.374895I
b = 0.613697 + 1.017340I
2.42985 + 6.27823I 7.32031 6.32359I
u = 0.190670 + 1.155730I
a = 0.01366 + 2.28563I
b = 0.628836 1.153550I
2.15092 9.48353I 0
u = 0.190670 1.155730I
a = 0.01366 2.28563I
b = 0.628836 + 1.153550I
2.15092 + 9.48353I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.532399 + 1.050880I
a = 1.16792 + 1.12279I
b = 0.139051 0.972541I
1.97142 2.68154I 0
u = 0.532399 1.050880I
a = 1.16792 1.12279I
b = 0.139051 + 0.972541I
1.97142 + 2.68154I 0
u = 0.682581 + 0.973399I
a = 1.55596 + 1.01812I
b = 0.423358 0.977979I
1.01578 4.23738I 0
u = 0.682581 0.973399I
a = 1.55596 1.01812I
b = 0.423358 + 0.977979I
1.01578 + 4.23738I 0
u = 0.737484 + 0.947027I
a = 0.255221 + 0.689415I
b = 1.108830 + 0.298809I
4.27963 + 4.12596I 0
u = 0.737484 0.947027I
a = 0.255221 0.689415I
b = 1.108830 0.298809I
4.27963 4.12596I 0
u = 0.449989 + 1.115620I
a = 1.04346 0.97703I
b = 0.474923 + 1.017330I
0.54346 + 1.75236I 0
u = 0.449989 1.115620I
a = 1.04346 + 0.97703I
b = 0.474923 1.017330I
0.54346 1.75236I 0
u = 0.435093 + 0.655870I
a = 0.421928 0.262313I
b = 0.013074 + 0.389178I
0.058062 1.373770I 0.54762 + 4.59641I
u = 0.435093 0.655870I
a = 0.421928 + 0.262313I
b = 0.013074 0.389178I
0.058062 + 1.373770I 0.54762 4.59641I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.750193 + 0.971797I
a = 1.56758 0.87634I
b = 0.625386 + 1.066570I
1.26633 9.05370I 0
u = 0.750193 0.971797I
a = 1.56758 + 0.87634I
b = 0.625386 1.066570I
1.26633 + 9.05370I 0
u = 0.751292 + 0.980442I
a = 1.30409 1.91476I
b = 0.474824 + 1.073280I
6.97127 + 6.31431I 0
u = 0.751292 0.980442I
a = 1.30409 + 1.91476I
b = 0.474824 1.073280I
6.97127 6.31431I 0
u = 0.888822 + 0.861156I
a = 0.420743 0.227554I
b = 0.503579 + 0.631395I
8.93127 + 3.93572I 0
u = 0.888822 0.861156I
a = 0.420743 + 0.227554I
b = 0.503579 0.631395I
8.93127 3.93572I 0
u = 0.745302 + 1.004020I
a = 0.429820 0.617085I
b = 1.133830 0.574421I
6.13711 + 9.23592I 0
u = 0.745302 1.004020I
a = 0.429820 + 0.617085I
b = 1.133830 + 0.574421I
6.13711 9.23592I 0
u = 0.728006 + 1.029620I
a = 1.30483 + 1.76760I
b = 0.653700 1.243700I
1.30783 + 10.33650I 0
u = 0.728006 1.029620I
a = 1.30483 1.76760I
b = 0.653700 + 1.243700I
1.30783 10.33650I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.665608 + 0.272736I
a = 0.030085 0.514045I
b = 0.406144 + 0.846985I
0.11266 1.79745I 3.68305 + 3.00636I
u = 0.665608 0.272736I
a = 0.030085 + 0.514045I
b = 0.406144 0.846985I
0.11266 + 1.79745I 3.68305 3.00636I
u = 0.852550 + 0.956405I
a = 0.320716 0.242205I
b = 0.414388 0.586515I
8.63777 + 2.49143I 0
u = 0.852550 0.956405I
a = 0.320716 + 0.242205I
b = 0.414388 + 0.586515I
8.63777 2.49143I 0
u = 0.749415 + 1.052960I
a = 1.33912 1.71674I
b = 0.77993 + 1.20298I
4.0986 + 16.1013I 0
u = 0.749415 1.052960I
a = 1.33912 + 1.71674I
b = 0.77993 1.20298I
4.0986 16.1013I 0
u = 0.633866 + 0.064239I
a = 0.737841 1.003620I
b = 0.712988 + 0.613513I
3.67287 1.17347I 10.32734 + 0.68526I
u = 0.633866 0.064239I
a = 0.737841 + 1.003620I
b = 0.712988 0.613513I
3.67287 + 1.17347I 10.32734 0.68526I
u = 0.470621 + 0.142712I
a = 0.309496 + 0.762972I
b = 0.176109 + 1.095200I
2.07880 2.37441I 0.70861 + 4.00251I
u = 0.470621 0.142712I
a = 0.309496 0.762972I
b = 0.176109 1.095200I
2.07880 + 2.37441I 0.70861 4.00251I
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.0632515
a = 10.0652
b = 0.518539
1.19409 8.46120
12
II. I
u
2
=
h−3a
2
u+2a
2
4au+7b+5au+10, a
3
a
2
u+2a
2
+3aua+5u, u
2
u+1i
(i) Arc colorings
a
7
=
1
0
a
10
=
0
u
a
8
=
1
u 1
a
3
=
a
3
7
a
2
u +
4
7
au + ···
5
7
a
10
7
a
11
=
u
u
a
6
=
1
7
a
2
u
1
7
au + ··· +
3
7
a
8
7
4
7
a
2
u +
3
7
au + ···
2
7
a +
3
7
a
4
=
3
7
a
2
u
3
7
au + ··· +
2
7
a
10
7
1
7
a
2
u
1
7
au + ··· +
3
7
a +
6
7
a
5
=
1
7
a
2
u
1
7
au + ··· +
3
7
a
8
7
4
7
a
2
u +
3
7
au + ···
2
7
a +
3
7
a
9
=
1
u 1
a
1
=
1
0
a
2
=
3
7
a
2
u +
4
7
au + ··· +
2
7
a
10
7
3
7
a
2
u +
4
7
au + ···
5
7
a
10
7
a
2
=
3
7
a
2
u +
4
7
au + ··· +
2
7
a
10
7
3
7
a
2
u +
4
7
au + ···
5
7
a
10
7
(ii) Obstruction class = 1
(iii) Cusp Shapes =
18
7
a
2
u +
2
7
a
2
4
7
au +
19
7
a +
62
7
u
67
7
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
3
+ u
2
1)
2
c
2
, c
6
(u
3
+ u
2
+ 2u + 1)
2
c
3
(u
3
u
2
+ 2u 1)
2
c
4
(u
3
u
2
+ 1)
2
c
5
, c
8
u
6
c
7
, c
11
(u
2
u + 1)
3
c
9
, c
10
(u
2
+ u + 1)
3
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
3
y
2
+ 2y 1)
2
c
2
, c
3
, c
6
(y
3
+ 3y
2
+ 2y 1)
2
c
5
, c
8
y
6
c
7
, c
9
, c
10
c
11
(y
2
+ y + 1)
3
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.46996 + 0.49350I
b = 0.569840
1.11345 2.02988I 2.22484 + 11.58609I
u = 0.500000 + 0.866025I
a = 1.11700 1.21217I
b = 0.215080 + 1.307140I
3.02413 + 0.79824I 2.65209 0.57512I
u = 0.500000 + 0.866025I
a = 1.14704 + 1.58470I
b = 0.215080 1.307140I
3.02413 4.85801I 0.92725 + 3.71146I
u = 0.500000 0.866025I
a = 1.46996 0.49350I
b = 0.569840
1.11345 + 2.02988I 2.22484 11.58609I
u = 0.500000 0.866025I
a = 1.11700 + 1.21217I
b = 0.215080 1.307140I
3.02413 0.79824I 2.65209 + 0.57512I
u = 0.500000 0.866025I
a = 1.14704 1.58470I
b = 0.215080 + 1.307140I
3.02413 + 4.85801I 0.92725 3.71146I
16
III. I
u
3
= hb, u
3
2u
2
+ a 2u, u
4
+ u
3
+ u
2
+ 1i
(i) Arc colorings
a
7
=
1
0
a
10
=
0
u
a
8
=
1
u
2
a
3
=
u
3
+ 2u
2
+ 2u
0
a
11
=
u
u
a
6
=
1
0
a
4
=
u
3
+ 2u
2
+ 2u
0
a
5
=
u
2
+ 1
u
3
u
2
1
a
9
=
u
3
u
3
+ u
a
1
=
u
2
1
u
3
+ u
2
+ 1
a
2
=
u
3
+ u
2
+ 2u 1
u
3
+ u
2
+ 1
a
2
=
u
3
+ u
2
+ 2u 1
u
3
+ u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
3
+ 5u
2
8
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
4
c
2
, c
4
(u + 1)
4
c
3
, c
6
u
4
c
5
, c
9
u
4
+ u
3
+ 3u
2
+ 2u + 1
c
7
u
4
+ u
3
+ u
2
+ 1
c
8
, c
11
u
4
u
3
+ 3u
2
2u + 1
c
10
u
4
u
3
+ u
2
+ 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
6
y
4
c
5
, c
8
, c
9
c
11
y
4
+ 5y
3
+ 7y
2
+ 2y + 1
c
7
, c
10
y
4
+ y
3
+ 3y
2
+ 2y + 1
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.351808 + 0.720342I
a = 0.59074 + 2.34806I
b = 0
1.43393 1.41510I 11.48794 + 2.21528I
u = 0.351808 0.720342I
a = 0.59074 2.34806I
b = 0
1.43393 + 1.41510I 11.48794 2.21528I
u = 0.851808 + 0.911292I
a = 0.409261 0.055548I
b = 0
8.43568 + 3.16396I 4.01206 4.08190I
u = 0.851808 0.911292I
a = 0.409261 + 0.055548I
b = 0
8.43568 3.16396I 4.01206 + 4.08190I
20
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
4
)(u
3
+ u
2
1)
2
(u
71
7u
70
+ ··· 19u + 1)
c
2
((u + 1)
4
)(u
3
+ u
2
+ 2u + 1)
2
(u
71
+ 35u
70
+ ··· + 91u + 1)
c
3
u
4
(u
3
u
2
+ 2u 1)
2
(u
71
3u
70
+ ··· 72u + 16)
c
4
((u + 1)
4
)(u
3
u
2
+ 1)
2
(u
71
7u
70
+ ··· 19u + 1)
c
5
u
6
(u
4
+ u
3
+ 3u
2
+ 2u + 1)(u
71
+ 2u
70
+ ··· + 224u + 64)
c
6
u
4
(u
3
+ u
2
+ 2u + 1)
2
(u
71
3u
70
+ ··· 72u + 16)
c
7
((u
2
u + 1)
3
)(u
4
+ u
3
+ u
2
+ 1)(u
71
5u
70
+ ··· + 16u 1)
c
8
u
6
(u
4
u
3
+ 3u
2
2u + 1)(u
71
+ 2u
70
+ ··· + 224u + 64)
c
9
((u
2
+ u + 1)
3
)(u
4
+ u
3
+ 3u
2
+ 2u + 1)(u
71
23u
70
+ ··· + 246u + 1)
c
10
((u
2
+ u + 1)
3
)(u
4
u
3
+ u
2
+ 1)(u
71
5u
70
+ ··· + 16u 1)
c
11
((u
2
u + 1)
3
)(u
4
u
3
+ 3u
2
2u + 1)(u
71
23u
70
+ ··· + 246u + 1)
21
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y 1)
4
)(y
3
y
2
+ 2y 1)
2
(y
71
35y
70
+ ··· + 91y 1)
c
2
((y 1)
4
)(y
3
+ 3y
2
+ 2y 1)
2
(y
71
+ 9y
70
+ ··· + 3279y 1)
c
3
, c
6
y
4
(y
3
+ 3y
2
+ 2y 1)
2
(y
71
+ 33y
70
+ ··· 4800y 256)
c
5
, c
8
y
6
(y
4
+ 5y
3
+ ··· + 2y + 1)(y
71
+ 40y
70
+ ··· 39936y 4096)
c
7
, c
10
((y
2
+ y + 1)
3
)(y
4
+ y
3
+ 3y
2
+ 2y + 1)(y
71
+ 23y
70
+ ··· + 246y 1)
c
9
, c
11
((y
2
+ y + 1)
3
)(y
4
+ 5y
3
+ ··· + 2y + 1)(y
71
+ 55y
70
+ ··· + 62490y 1)
22