12n
0581
(K12n
0581
)
A knot diagram
1
Linearized knot diagam
3 7 11 10 9 2 12 3 5 4 7 8
Solving Sequence
7,11
12
4,8
3 2 1 6 10 5 9
c
11
c
7
c
3
c
2
c
1
c
6
c
10
c
4
c
9
c
5
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= hu
9
u
8
7u
7
+ 6u
6
+ 14u
5
7u
4
5u
3
10u
2
+ 4b + u,
u
9
+ u
8
+ 7u
7
6u
6
14u
5
+ 7u
4
+ 5u
3
+ 10u
2
+ 4a u 4,
u
10
u
9
8u
8
+ 7u
7
+ 21u
6
13u
5
19u
4
+ u
3
+ 6u
2
2u 1i
I
u
2
= h2u
7
+ u
6
6u
5
6u
4
+ 5u
3
+ 11u
2
+ 2b 3u 10,
5u
7
3u
6
+ 16u
5
+ 18u
4
15u
3
37u
2
+ 8a + 9u + 39, u
8
u
7
4u
6
+ 2u
5
+ 7u
4
+ u
3
9u
2
3u + 8i
I
u
3
= hb + a + 1, a
2
+ 2a + 4, u + 1i
I
u
4
= hb, a + 1, u + 1i
I
u
5
= hb + a + 1, a
2
+ 2a + 2, u 1i
* 5 irreducible components of dim
C
= 0, with total 23 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
9
u
8
+ · · · + 4b + u, u
9
+ u
8
+ · · · + 4a 4, u
10
u
9
+ · · · 2u 1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
4
=
1
4
u
9
1
4
u
8
+ ··· +
1
4
u + 1
1
4
u
9
+
1
4
u
8
+ ··· +
5
2
u
2
1
4
u
a
8
=
u
u
3
+ u
a
3
=
1
1
4
u
9
+
1
4
u
8
+ ··· +
5
2
u
2
1
4
u
a
2
=
1
1
4
u
9
+
1
4
u
8
+ ··· +
3
2
u
2
1
4
u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
6
=
u
1
4
u
8
+
1
4
u
7
+ ··· +
1
2
u
1
4
a
10
=
1
4
u
9
+
1
2
u
8
+ ···
1
4
u +
5
4
1
2
u
9
3
4
u
8
+ ··· +
1
2
u
1
4
a
5
=
1
4
u
9
+
1
2
u
8
+ ··· +
1
4
u +
3
4
1
2
u
7
7
2
u
5
+ ···
1
2
u +
1
2
a
9
=
1
4
u
8
1
4
u
7
+ ···
3
2
u +
1
4
1
4
u
9
+
1
4
u
8
+ ··· +
7
4
u +
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
9
7
2
u
8
31
2
u
7
+
53
2
u
6
+ 38u
5
60u
4
61
2
u
3
+
63
2
u
2
+ 14u
37
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
10
+ 17u
9
+ ··· + 16u + 1
c
2
, c
6
, c
7
c
11
, c
12
u
10
u
9
8u
8
+ 7u
7
+ 21u
6
13u
5
19u
4
+ u
3
+ 6u
2
2u 1
c
3
, c
4
, c
5
c
9
, c
10
u
10
+ 3u
9
+ ··· + 12u + 2
c
8
u
10
+ 3u
9
+ ··· + 108u + 58
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
10
49y
9
+ ··· 100y + 1
c
2
, c
6
, c
7
c
11
, c
12
y
10
17y
9
+ ··· 16y + 1
c
3
, c
4
, c
5
c
9
, c
10
y
10
+ 13y
9
+ ··· 36y + 4
c
8
y
10
51y
9
+ ··· 9460y + 3364
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.624283 + 0.413630I
a = 0.99995 + 1.69388I
b = 0.00005 1.69388I
11.16200 + 1.46971I 6.43725 4.71631I
u = 0.624283 0.413630I
a = 0.99995 1.69388I
b = 0.00005 + 1.69388I
11.16200 1.46971I 6.43725 + 4.71631I
u = 0.425863 + 0.318105I
a = 0.919105 0.860258I
b = 0.080895 + 0.860258I
2.03579 1.27062I 6.43196 + 5.78765I
u = 0.425863 0.318105I
a = 0.919105 + 0.860258I
b = 0.080895 0.860258I
2.03579 + 1.27062I 6.43196 5.78765I
u = 0.299023
a = 0.714196
b = 0.285804
0.505065 19.6030
u = 1.74982 + 0.35246I
a = 0.79690 1.70108I
b = 0.20310 + 1.70108I
4.80759 8.37238I 11.74586 + 3.25359I
u = 1.74982 0.35246I
a = 0.79690 + 1.70108I
b = 0.20310 1.70108I
4.80759 + 8.37238I 11.74586 3.25359I
u = 1.85465 + 0.19086I
a = 0.362420 + 0.933540I
b = 0.637580 0.933540I
13.8130 + 4.9888I 13.52702 3.37301I
u = 1.85465 0.19086I
a = 0.362420 0.933540I
b = 0.637580 + 0.933540I
13.8130 4.9888I 13.52702 + 3.37301I
u = 1.90554
a = 0.129056
b = 0.870944
16.6134 16.1130
5
II. I
u
2
= h2u
7
+ u
6
+ · · · + 2b 10, 5u
7
3u
6
+ · · · + 8a + 39, u
8
u
7
4u
6
+ 2u
5
+ 7u
4
+ u
3
9u
2
3u + 8i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
4
=
5
8
u
7
+
3
8
u
6
+ ···
9
8
u
39
8
u
7
1
2
u
6
+ ··· +
3
2
u + 5
a
8
=
u
u
3
+ u
a
3
=
3
8
u
7
1
8
u
6
+ ··· +
3
8
u +
1
8
u
7
1
2
u
6
+ ··· +
3
2
u + 5
a
2
=
3
8
u
7
1
8
u
6
+ ··· +
3
8
u +
1
8
1
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
6
=
3
8
u
7
+
5
8
u
6
+ ··· +
9
8
u
21
8
1
2
u
7
1
2
u
6
+ ··· 3u
2
+ 3
a
10
=
1
8
u
7
3
8
u
6
+ ··· +
5
8
u +
7
8
1
2
u
7
+
3
2
u
5
+ ··· +
1
2
u + 3
a
5
=
1
4
u
7
1
4
u
6
+ ···
5
4
u
3
4
u
7
+ u
6
3u
5
4u
4
+ 2u
3
+ 6u
2
u 6
a
9
=
1
8
u
7
1
8
u
6
+ ···
9
8
u
3
8
1
2
u
7
+
1
2
u
6
+ ··· + 3u
2
3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
7
6u
5
4u
4
+ 8u
3
+ 10u
2
6u 22
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
+ 9u
7
+ 34u
6
+ 76u
5
+ 127u
4
+ 179u
3
+ 199u
2
+ 153u + 64
c
2
, c
6
, c
7
c
11
, c
12
u
8
u
7
4u
6
+ 2u
5
+ 7u
4
+ u
3
9u
2
3u + 8
c
3
, c
4
, c
5
c
9
, c
10
(u
4
u
3
+ 3u
2
2u + 1)
2
c
8
(u
4
u
3
+ u
2
+ 1)
2
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
8
13y
7
+ ··· + 2063y + 4096
c
2
, c
6
, c
7
c
11
, c
12
y
8
9y
7
+ 34y
6
76y
5
+ 127y
4
179y
3
+ 199y
2
153y + 64
c
3
, c
4
, c
5
c
9
, c
10
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
c
8
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.974589 + 0.525375I
a = 0.575851 + 1.230320I
b = 0.395123 0.506844I
3.50087 1.41510I 13.8267 + 4.9087I
u = 0.974589 0.525375I
a = 0.575851 1.230320I
b = 0.395123 + 0.506844I
3.50087 + 1.41510I 13.8267 4.9087I
u = 0.728625 + 0.959908I
a = 0.72016 2.57269I
b = 0.10488 + 1.55249I
3.50087 + 3.16396I 10.17326 2.56480I
u = 0.728625 0.959908I
a = 0.72016 + 2.57269I
b = 0.10488 1.55249I
3.50087 3.16396I 10.17326 + 2.56480I
u = 1.326400 + 0.194967I
a = 0.267111 + 0.013410I
b = 0.395123 0.506844I
3.50087 1.41510I 13.8267 + 4.9087I
u = 1.326400 0.194967I
a = 0.267111 0.013410I
b = 0.395123 + 0.506844I
3.50087 + 1.41510I 13.8267 4.9087I
u = 1.58043 + 0.04862I
a = 0.374382 + 0.959864I
b = 0.10488 1.55249I
3.50087 3.16396I 10.17326 + 2.56480I
u = 1.58043 0.04862I
a = 0.374382 0.959864I
b = 0.10488 + 1.55249I
3.50087 + 3.16396I 10.17326 2.56480I
9
III. I
u
3
= hb + a + 1, a
2
+ 2a + 4, u + 1i
(i) Arc colorings
a
7
=
0
1
a
11
=
1
0
a
12
=
1
1
a
4
=
a
a 1
a
8
=
1
0
a
3
=
1
a 1
a
2
=
1
a
a
1
=
0
1
a
6
=
1
a 1
a
10
=
a 3
3
a
5
=
a + 1
2a + 2
a
9
=
a + 2
3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
(u 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
2
+ 3
c
6
, c
11
, c
12
(u + 1)
2
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
(y 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y + 3)
2
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000 + 1.73205I
b = 1.73205I
9.86960 12.0000
u = 1.00000
a = 1.00000 1.73205I
b = 1.73205I
9.86960 12.0000
13
IV. I
u
4
= hb, a + 1, u + 1i
(i) Arc colorings
a
7
=
0
1
a
11
=
1
0
a
12
=
1
1
a
4
=
1
0
a
8
=
1
0
a
3
=
1
0
a
2
=
1
1
a
1
=
0
1
a
6
=
1
0
a
10
=
1
0
a
5
=
1
0
a
9
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
u 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
c
6
, c
11
, c
12
u + 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
y 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
3.28987 12.0000
17
V. I
u
5
= hb + a + 1, a
2
+ 2a + 2, u 1i
(i) Arc colorings
a
7
=
0
1
a
11
=
1
0
a
12
=
1
1
a
4
=
a
a 1
a
8
=
1
0
a
3
=
1
a 1
a
2
=
1
a
a
1
=
0
1
a
6
=
1
a + 1
a
10
=
a 1
1
a
5
=
a + 1
0
a
9
=
a 2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
11
c
12
(u 1)
2
c
2
, c
7
(u + 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
2
+ 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
(y 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y + 1)
2
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000 + 1.00000I
b = 1.000000I
0 12.0000
u = 1.00000
a = 1.00000 1.00000I
b = 1.000000I
0 12.0000
21
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
5
· (u
8
+ 9u
7
+ 34u
6
+ 76u
5
+ 127u
4
+ 179u
3
+ 199u
2
+ 153u + 64)
· (u
10
+ 17u
9
+ ··· + 16u + 1)
c
2
, c
7
(u 1)
3
(u + 1)
2
(u
8
u
7
4u
6
+ 2u
5
+ 7u
4
+ u
3
9u
2
3u + 8)
· (u
10
u
9
8u
8
+ 7u
7
+ 21u
6
13u
5
19u
4
+ u
3
+ 6u
2
2u 1)
c
3
, c
4
, c
5
c
9
, c
10
u(u
2
+ 1)(u
2
+ 3)(u
4
u
3
+ ··· 2u + 1)
2
(u
10
+ 3u
9
+ ··· + 12u + 2)
c
6
, c
11
, c
12
(u 1)
2
(u + 1)
3
(u
8
u
7
4u
6
+ 2u
5
+ 7u
4
+ u
3
9u
2
3u + 8)
· (u
10
u
9
8u
8
+ 7u
7
+ 21u
6
13u
5
19u
4
+ u
3
+ 6u
2
2u 1)
c
8
u(u
2
+ 1)(u
2
+ 3)(u
4
u
3
+ u
2
+ 1)
2
(u
10
+ 3u
9
+ ··· + 108u + 58)
22
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
5
)(y
8
13y
7
+ ··· + 2063y + 4096)
· (y
10
49y
9
+ ··· 100y + 1)
c
2
, c
6
, c
7
c
11
, c
12
(y 1)
5
· (y
8
9y
7
+ 34y
6
76y
5
+ 127y
4
179y
3
+ 199y
2
153y + 64)
· (y
10
17y
9
+ ··· 16y + 1)
c
3
, c
4
, c
5
c
9
, c
10
y(y + 1)
2
(y + 3)
2
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
· (y
10
+ 13y
9
+ ··· 36y + 4)
c
8
y(y + 1)
2
(y + 3)
2
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
· (y
10
51y
9
+ ··· 9460y + 3364)
23