12n
0582
(K12n
0582
)
A knot diagram
1
Linearized knot diagam
3 7 12 11 10 2 12 1 3 5 4 8
Solving Sequence
3,12 4,8
1 9 7 2 6 11 5 10
c
3
c
12
c
8
c
7
c
2
c
6
c
11
c
4
c
10
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
7
+ u
6
6u
5
+ 4u
4
9u
3
+ 3u
2
+ 2b 2u, u
8
7u
6
2u
5
13u
4
10u
3
3u
2
+ 4a 10u + 2,
u
9
u
8
+ 9u
7
5u
6
+ 25u
5
3u
4
+ 23u
3
+ 7u
2
+ 6u + 2i
I
u
2
= hb u 1, 3a u, u
2
+ 3i
I
u
3
= hb + u + 1, a + u, u
2
+ 1i
I
v
1
= ha, b 1, v 1i
* 4 irreducible components of dim
C
= 0, with total 14 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−u
7
+ u
6
6u
5
+ 4u
4
9u
3
+ 3u
2
+ 2b 2u, u
8
7u
6
+ · · · +
4a + 2, u
9
u
8
+ · · · + 6u + 2i
(i) Arc colorings
a
3
=
1
0
a
12
=
0
u
a
4
=
1
u
2
a
8
=
1
4
u
8
+
7
4
u
6
+ ··· +
5
2
u
1
2
1
2
u
7
1
2
u
6
+ ···
3
2
u
2
+ u
a
1
=
1
4
u
8
7
4
u
6
+ ···
3
2
u
1
2
1
4
u
8
5
4
u
6
+ ···
5
4
u
2
1
2
a
9
=
u
5
+ 4u
3
+ 3u
u
5
+ 3u
3
+ u
a
7
=
1
4
u
8
+
7
4
u
6
+ ··· +
5
2
u
1
2
1
4
u
8
9
4
u
6
+ ··· u
1
2
a
2
=
1
2
u
6
+
1
2
u
5
+ ···
7
2
u
2
3
2
u
1
4
u
8
5
4
u
6
+ ···
5
4
u
2
1
2
a
6
=
u
4
3u
2
1
u
6
4u
4
3u
2
a
11
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
+ 2u
2
a
10
=
u
3
+ 2u
u
5
+ 3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
8
+ 2u
7
18u
6
+ 10u
5
50u
4
+ 6u
3
46u
2
12u 12
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
9
4u
8
+ ··· + 145u + 64
c
2
, c
6
u
9
2u
8
+ 4u
7
6u
6
+ 18u
5
2u
4
+ 8u
3
6u
2
7u + 8
c
3
, c
4
, c
5
c
10
, c
11
u
9
u
8
+ 9u
7
5u
6
+ 25u
5
3u
4
+ 23u
3
+ 7u
2
+ 6u + 2
c
7
, c
8
, c
12
u
9
+ 2u
8
8u
7
18u
6
+ 18u
5
+ 50u
4
+ 4u
3
34u
2
+ 9u + 8
c
9
u
9
19u
8
+ ··· 654u + 82
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
9
+ 40y
8
+ ··· + 6177y 4096
c
2
, c
6
y
9
+ 4y
8
+ ··· + 145y 64
c
3
, c
4
, c
5
c
10
, c
11
y
9
+ 17y
8
+ ··· + 8y 4
c
7
, c
8
, c
12
y
9
20y
8
+ ··· + 625y 64
c
9
y
9
+ 17y
8
+ ··· 49688y 6724
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.286210 + 1.260340I
a = 0.755885 0.774032I
b = 0.258411 0.633815I
6.78979 + 0.44094I 1.257807 0.497446I
u = 0.286210 1.260340I
a = 0.755885 + 0.774032I
b = 0.258411 + 0.633815I
6.78979 0.44094I 1.257807 + 0.497446I
u = 0.064698 + 0.563024I
a = 0.501501 + 1.062470I
b = 0.419693 0.038751I
0.80178 + 1.43893I 0.93515 5.88586I
u = 0.064698 0.563024I
a = 0.501501 1.062470I
b = 0.419693 + 0.038751I
0.80178 1.43893I 0.93515 + 5.88586I
u = 0.312120
a = 1.25225
b = 0.623552
0.900968 13.4400
u = 0.30797 + 1.73568I
a = 0.412318 + 1.116980I
b = 0.65742 + 2.01585I
17.2800 2.5995I 1.01236 + 1.23711I
u = 0.30797 1.73568I
a = 0.412318 1.116980I
b = 0.65742 2.01585I
17.2800 + 2.5995I 1.01236 1.23711I
u = 0.12658 + 1.95644I
a = 0.215942 1.161020I
b = 0.29109 2.91331I
7.97178 5.85424I 0.38489 + 1.87688I
u = 0.12658 1.95644I
a = 0.215942 + 1.161020I
b = 0.29109 + 2.91331I
7.97178 + 5.85424I 0.38489 1.87688I
5
II. I
u
2
= hb u 1, 3a u, u
2
+ 3i
(i) Arc colorings
a
3
=
1
0
a
12
=
0
u
a
4
=
1
3
a
8
=
1
3
u
u + 1
a
1
=
1
3
u
1
a
9
=
0
u
a
7
=
1
3
u
1
a
2
=
1
3
u + 1
1
a
6
=
1
0
a
11
=
u
2u
a
5
=
2
3
a
10
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
12
(u 1)
2
c
3
, c
4
, c
5
c
9
, c
10
, c
11
u
2
+ 3
c
6
, c
7
, c
8
(u + 1)
2
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
12
(y 1)
2
c
3
, c
4
, c
5
c
9
, c
10
, c
11
(y + 3)
2
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.73205I
a = 0.577350I
b = 1.00000 + 1.73205I
13.1595 0
u = 1.73205I
a = 0.577350I
b = 1.00000 1.73205I
13.1595 0
9
III. I
u
3
= hb + u + 1, a + u, u
2
+ 1i
(i) Arc colorings
a
3
=
1
0
a
12
=
0
u
a
4
=
1
1
a
8
=
u
u 1
a
1
=
u
1
a
9
=
0
u
a
7
=
u
1
a
2
=
u + 1
1
a
6
=
1
0
a
11
=
u
0
a
5
=
0
1
a
10
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
7
c
8
(u 1)
2
c
2
, c
12
(u + 1)
2
c
3
, c
4
, c
5
c
9
, c
10
, c
11
u
2
+ 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
12
(y 1)
2
c
3
, c
4
, c
5
c
9
, c
10
, c
11
(y + 1)
2
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 1.000000I
b = 1.00000 1.00000I
3.28987 0
u = 1.000000I
a = 1.000000I
b = 1.00000 + 1.00000I
3.28987 0
13
IV. I
v
1
= ha, b 1, v 1i
(i) Arc colorings
a
3
=
1
0
a
12
=
1
0
a
4
=
1
0
a
8
=
0
1
a
1
=
1
1
a
9
=
1
0
a
7
=
1
1
a
2
=
2
1
a
6
=
1
0
a
11
=
1
0
a
5
=
1
0
a
10
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
12
u 1
c
3
, c
4
, c
5
c
9
, c
10
, c
11
u
c
6
, c
7
, c
8
u + 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
12
y 1
c
3
, c
4
, c
5
c
9
, c
10
, c
11
y
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
0 0
17
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
5
)(u
9
4u
8
+ ··· + 145u + 64)
c
2
(u 1)
3
(u + 1)
2
· (u
9
2u
8
+ 4u
7
6u
6
+ 18u
5
2u
4
+ 8u
3
6u
2
7u + 8)
c
3
, c
4
, c
5
c
10
, c
11
u(u
2
+ 1)(u
2
+ 3)(u
9
u
8
+ ··· + 6u + 2)
c
6
(u 1)
2
(u + 1)
3
· (u
9
2u
8
+ 4u
7
6u
6
+ 18u
5
2u
4
+ 8u
3
6u
2
7u + 8)
c
7
, c
8
(u 1)
2
(u + 1)
3
· (u
9
+ 2u
8
8u
7
18u
6
+ 18u
5
+ 50u
4
+ 4u
3
34u
2
+ 9u + 8)
c
9
u(u
2
+ 1)(u
2
+ 3)(u
9
19u
8
+ ··· 654u + 82)
c
12
(u 1)
3
(u + 1)
2
· (u
9
+ 2u
8
8u
7
18u
6
+ 18u
5
+ 50u
4
+ 4u
3
34u
2
+ 9u + 8)
18
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
5
)(y
9
+ 40y
8
+ ··· + 6177y 4096)
c
2
, c
6
((y 1)
5
)(y
9
+ 4y
8
+ ··· + 145y 64)
c
3
, c
4
, c
5
c
10
, c
11
y(y + 1)
2
(y + 3)
2
(y
9
+ 17y
8
+ ··· + 8y 4)
c
7
, c
8
, c
12
((y 1)
5
)(y
9
20y
8
+ ··· + 625y 64)
c
9
y(y + 1)
2
(y + 3)
2
(y
9
+ 17y
8
+ ··· 49688y 6724)
19