12n
0583
(K12n
0583
)
A knot diagram
1
Linearized knot diagam
3 7 8 10 9 2 12 6 5 4 7 8
Solving Sequence
2,6
7 3
1,9
5 10 4 8 12 11
c
6
c
2
c
1
c
5
c
9
c
4
c
8
c
12
c
11
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
14
+ u
13
+ u
12
2u
11
5u
10
+ 6u
9
6u
7
7u
6
+ 8u
5
2u
4
4u
3
7u
2
+ 4b + u + 1,
u
14
+ u
13
+ u
12
2u
11
5u
10
+ 6u
9
6u
7
7u
6
+ 8u
5
4u
4
4u
3
5u
2
+ 2a + u 1,
u
16
u
15
2u
14
+ 3u
13
+ 6u
12
8u
11
5u
10
+ 12u
9
+ 7u
8
14u
7
u
6
+ 12u
5
+ u
4
5u
3
+ u + 1i
I
u
2
= h−1094u
19
+ 352u
18
+ ··· + 10214b 24990, 4277u
19
4179u
18
+ ··· + 40856a + 46007,
u
20
u
19
+ ··· + 9u 8i
I
u
3
= h2b a 1, a
2
+ 2a + 13, u + 1i
I
u
4
= h2b a 1, a
2
+ 2a + 5, u 1i
I
u
5
= hb, a + 1, u + 1i
* 5 irreducible components of dim
C
= 0, with total 41 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
14
+u
13
+· · ·+4b+1, u
14
+u
13
+· · ·+2a1, u
16
u
15
+· · ·+u+1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
1
=
u
3
u
5
u
3
+ u
a
9
=
1
2
u
14
1
2
u
13
+ ···
1
2
u +
1
2
1
4
u
14
1
4
u
13
+ ···
1
4
u
1
4
a
5
=
1
2
u
15
+
7
4
u
14
+ ···
7
4
u
5
4
1
4
u
15
+
3
4
u
14
+ ···
3
4
u 1
a
10
=
1
4
u
15
+
1
2
u
14
+ ···
1
2
u
3
4
1
2
u
13
u
12
+ ··· +
1
2
u
2
1
2
a
4
=
5
4
u
15
3
2
u
14
+ ···
3
2
u +
1
4
u
15
5
4
u
14
+ ···
1
4
u +
1
4
a
8
=
1
4
u
14
1
4
u
13
+ ···
1
4
u +
3
4
1
4
u
14
1
4
u
13
+ ···
1
4
u
1
4
a
12
=
1
4
u
15
1
4
u
14
+ ···
1
4
u
2
+
3
4
u
1
4
u
15
1
4
u
14
+ ···
1
4
u
2
+
3
4
u
a
11
=
1
4
u
15
1
4
u
14
+ ···
1
4
u
2
+
7
4
u
1
4
u
15
1
4
u
14
+ ···
1
4
u
2
+
3
4
u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
3
2
u
15
+
9
2
u
14
1
2
u
13
10u
12
1
2
u
11
+ 29u
10
16u
9
31u
8
+
39
2
u
7
+ 41u
6
36u
5
21u
4
+
53
2
u
3
+
27
2
u
2
23
2
u 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
16
+ 5u
15
+ ··· + u + 1
c
2
, c
6
, c
7
c
11
, c
12
u
16
u
15
+ ··· + u + 1
c
3
u
16
+ 3u
15
+ ··· + 146u + 58
c
4
, c
5
, c
8
c
9
, c
10
u
16
+ 3u
15
+ ··· + 6u + 2
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
16
+ 19y
15
+ ··· + 23y + 1
c
2
, c
6
, c
7
c
11
, c
12
y
16
5y
15
+ ··· y + 1
c
3
y
16
3y
15
+ ··· + 33320y + 3364
c
4
, c
5
, c
8
c
9
, c
10
y
16
+ 21y
15
+ ··· + 24y + 4
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.652641 + 0.896529I
a = 0.291031 + 1.146470I
b = 0.06994 + 1.60049I
6.22844 0.56003I 3.20504 + 2.03342I
u = 0.652641 0.896529I
a = 0.291031 1.146470I
b = 0.06994 1.60049I
6.22844 + 0.56003I 3.20504 2.03342I
u = 0.806656 + 0.293377I
a = 0.55147 3.56996I
b = 0.01066 1.75439I
15.5290 + 1.2535I 5.93594 5.78561I
u = 0.806656 0.293377I
a = 0.55147 + 3.56996I
b = 0.01066 + 1.75439I
15.5290 1.2535I 5.93594 + 5.78561I
u = 0.863049 + 0.777771I
a = 0.003821 0.394263I
b = 0.459429 0.680536I
1.40791 + 2.31178I 2.22810 1.02238I
u = 0.863049 0.777771I
a = 0.003821 + 0.394263I
b = 0.459429 + 0.680536I
1.40791 2.31178I 2.22810 + 1.02238I
u = 0.699263 + 0.372224I
a = 0.54747 + 2.11955I
b = 0.023041 + 1.137640I
5.08177 1.44001I 5.73865 + 4.77821I
u = 0.699263 0.372224I
a = 0.54747 2.11955I
b = 0.023041 1.137640I
5.08177 + 1.44001I 5.73865 4.77821I
u = 1.000520 + 0.770635I
a = 0.326142 0.537879I
b = 0.646604 0.125765I
3.08984 6.02737I 0.18925 + 5.84414I
u = 1.000520 0.770635I
a = 0.326142 + 0.537879I
b = 0.646604 + 0.125765I
3.08984 + 6.02737I 0.18925 5.84414I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.097620 + 0.735783I
a = 0.99995 + 1.38493I
b = 0.416151 + 0.956386I
0.22230 + 9.61368I 4.84554 8.00895I
u = 1.097620 0.735783I
a = 0.99995 1.38493I
b = 0.416151 0.956386I
0.22230 9.61368I 4.84554 + 8.00895I
u = 1.172200 + 0.710728I
a = 1.65989 2.17594I
b = 0.11516 1.70265I
9.5315 11.7377I 6.63835 + 6.61183I
u = 1.172200 0.710728I
a = 1.65989 + 2.17594I
b = 0.11516 + 1.70265I
9.5315 + 11.7377I 6.63835 6.61183I
u = 0.257289 + 0.427551I
a = 0.599831 0.510753I
b = 0.240981 0.391034I
0.019028 + 0.937186I 0.40237 7.45995I
u = 0.257289 0.427551I
a = 0.599831 + 0.510753I
b = 0.240981 + 0.391034I
0.019028 0.937186I 0.40237 + 7.45995I
6
II. I
u
2
= h−1094u
19
+ 352u
18
+ · · · + 10214b 24990, 4277u
19
4179u
18
+
· · · + 40856a + 46007, u
20
u
19
+ · · · + 9u 8i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
1
=
u
3
u
5
u
3
+ u
a
9
=
0.104685u
19
+ 0.102286u
18
+ ··· 0.766717u 1.12608
0.107108u
19
0.0344625u
18
+ ··· 0.680537u + 2.44664
a
5
=
0.0908312u
19
+ 0.201757u
18
+ ··· 0.154714u 1.48343
0.265126u
19
+ 0.108479u
18
+ ··· 1.49990u + 1.58273
a
10
=
0.466370u
19
0.00396515u
18
+ ··· + 1.09002u 2.43014
0.122968u
19
+ 0.202271u
18
+ ··· 0.110828u 1.64989
a
4
=
0.305830u
19
0.198722u
18
+ ··· 0.0623409u + 2.07194
0.154690u
19
+ 0.0378892u
18
+ ··· + 1.80644u 1.05639
a
8
=
0.00242314u
19
+ 0.136749u
18
+ ··· 0.0861807u 3.57272
0.107108u
19
0.0344625u
18
+ ··· 0.680537u + 2.44664
a
12
=
0.171505u
19
0.289872u
18
+ ··· + 4.48857u + 2.09132
0.227335u
19
+ 0.238594u
18
+ ··· + 0.323771u 1.91326
a
11
=
1
8
u
19
1
8
u
18
+ ··· +
19
8
u +
9
8
0.0465048u
19
+ 0.164872u
18
+ ··· 1.11357u 0.966321
(ii) Obstruction class = 1
(iii) Cusp Shapes =
6596
5107
u
19
+
828
5107
u
18
+ ··· +
15248
5107
u +
25134
5107
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
20
+ 9u
19
+ ··· + 385u + 64
c
2
, c
6
, c
7
c
11
, c
12
u
20
u
19
+ ··· + 9u 8
c
3
(u
10
u
9
5u
8
+ 4u
7
+ 8u
6
3u
5
5u
4
2u
3
+ 3u
2
u 1)
2
c
4
, c
5
, c
8
c
9
, c
10
(u
10
u
9
+ 7u
8
6u
7
+ 16u
6
11u
5
+ 13u
4
6u
3
+ 3u
2
u 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
20
+ 3y
19
+ ··· + 2431y + 4096
c
2
, c
6
, c
7
c
11
, c
12
y
20
9y
19
+ ··· 385y + 64
c
3
(y
10
11y
9
+ ··· 7y + 1)
2
c
4
, c
5
, c
8
c
9
, c
10
(y
10
+ 13y
9
+ ··· 7y + 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.844382 + 0.577422I
a = 1.82553 0.56071I
b = 0.03425 1.67211I
14.0102 2.2863I 7.60221 + 2.91176I
u = 0.844382 0.577422I
a = 1.82553 + 0.56071I
b = 0.03425 + 1.67211I
14.0102 + 2.2863I 7.60221 2.91176I
u = 0.598296 + 0.894963I
a = 0.237969 + 0.532497I
b = 0.420834 + 0.842935I
1.29172 3.55946I 2.35774 + 4.06361I
u = 0.598296 0.894963I
a = 0.237969 0.532497I
b = 0.420834 0.842935I
1.29172 + 3.55946I 2.35774 4.06361I
u = 0.471623 + 0.985477I
a = 0.169899 1.229670I
b = 0.10787 1.66265I
7.38803 + 5.55652I 4.20810 2.88175I
u = 0.471623 0.985477I
a = 0.169899 + 1.229670I
b = 0.10787 + 1.66265I
7.38803 5.55652I 4.20810 + 2.88175I
u = 0.789879 + 0.382389I
a = 1.61085 0.05163I
b = 0.153406 + 0.833677I
5.14913 + 1.60532I 7.05654 5.03395I
u = 0.789879 0.382389I
a = 1.61085 + 0.05163I
b = 0.153406 0.833677I
5.14913 1.60532I 7.05654 + 5.03395I
u = 0.754802 + 0.842126I
a = 0.394821 + 0.277239I
b = 0.635590
3.84350 2.04859 + 0.I
u = 0.754802 0.842126I
a = 0.394821 0.277239I
b = 0.635590
3.84350 2.04859 + 0.I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.14103
a = 0.159161
b = 0.317683
2.68035 4.40060
u = 0.902493 + 0.781683I
a = 0.910195 1.019170I
b = 0.420834 0.842935I
1.29172 + 3.55946I 2.35774 4.06361I
u = 0.902493 0.781683I
a = 0.910195 + 1.019170I
b = 0.420834 + 0.842935I
1.29172 3.55946I 2.35774 + 4.06361I
u = 1.239710 + 0.076961I
a = 0.06009 + 1.78443I
b = 0.153406 + 0.833677I
5.14913 + 1.60532I 7.05654 5.03395I
u = 1.239710 0.076961I
a = 0.06009 1.78443I
b = 0.153406 0.833677I
5.14913 1.60532I 7.05654 + 5.03395I
u = 0.723928
a = 1.56044
b = 0.317683
2.68035 4.40060
u = 1.043190 + 0.765280I
a = 1.48424 + 1.76241I
b = 0.10787 + 1.66265I
7.38803 5.55652I 4.20810 + 2.88175I
u = 1.043190 0.765280I
a = 1.48424 1.76241I
b = 0.10787 1.66265I
7.38803 + 5.55652I 4.20810 2.88175I
u = 1.354480 + 0.103519I
a = 0.06730 3.11843I
b = 0.03425 1.67211I
14.0102 2.2863I 7.60221 + 2.91176I
u = 1.354480 0.103519I
a = 0.06730 + 3.11843I
b = 0.03425 + 1.67211I
14.0102 + 2.2863I 7.60221 2.91176I
11
III. I
u
3
= h2b a 1, a
2
+ 2a + 13, u + 1i
(i) Arc colorings
a
2
=
0
1
a
6
=
1
0
a
7
=
1
1
a
3
=
1
0
a
1
=
1
1
a
9
=
a
1
2
a +
1
2
a
5
=
1
2
a
11
2
3
a
10
=
3
2
a +
1
2
a 1
a
4
=
1
2
a +
9
2
3
a
8
=
1
2
a
1
2
1
2
a +
1
2
a
12
=
1
2
a
3
2
1
2
a
1
2
a
11
=
1
2
a
1
2
1
2
a +
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
(u 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
2
+ 3
c
6
, c
11
, c
12
(u + 1)
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
(y 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y + 3)
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000 + 3.46410I
b = 1.73205I
16.4493 12.0000
u = 1.00000
a = 1.00000 3.46410I
b = 1.73205I
16.4493 12.0000
15
IV. I
u
4
= h2b a 1, a
2
+ 2a + 5, u 1i
(i) Arc colorings
a
2
=
0
1
a
6
=
1
0
a
7
=
1
1
a
3
=
1
0
a
1
=
1
1
a
9
=
a
1
2
a +
1
2
a
5
=
1
2
a
3
2
1
a
10
=
1
2
a +
1
2
0
a
4
=
1
2
a
5
2
1
a
8
=
1
2
a
1
2
1
2
a +
1
2
a
12
=
1
2
a +
3
2
1
2
a +
1
2
a
11
=
1
2
a +
1
2
1
2
a
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
11
c
12
(u 1)
2
c
2
, c
7
(u + 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
2
+ 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
(y 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y + 1)
2
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000 + 2.00000I
b = 1.000000I
6.57974 12.0000
u = 1.00000
a = 1.00000 2.00000I
b = 1.000000I
6.57974 12.0000
19
V. I
u
5
= hb, a + 1, u + 1i
(i) Arc colorings
a
2
=
0
1
a
6
=
1
0
a
7
=
1
1
a
3
=
1
0
a
1
=
1
1
a
9
=
1
0
a
5
=
1
0
a
10
=
1
0
a
4
=
1
0
a
8
=
1
0
a
12
=
2
1
a
11
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
u 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
c
6
, c
11
, c
12
u + 1
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
y 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
3.28987 12.0000
23
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
5
)(u
16
+ 5u
15
+ ··· + u + 1)(u
20
+ 9u
19
+ ··· + 385u + 64)
c
2
, c
7
((u 1)
3
)(u + 1)
2
(u
16
u
15
+ ··· + u + 1)(u
20
u
19
+ ··· + 9u 8)
c
3
u(u
2
+ 1)(u
2
+ 3)
· (u
10
u
9
5u
8
+ 4u
7
+ 8u
6
3u
5
5u
4
2u
3
+ 3u
2
u 1)
2
· (u
16
+ 3u
15
+ ··· + 146u + 58)
c
4
, c
5
, c
8
c
9
, c
10
u(u
2
+ 1)(u
2
+ 3)
· (u
10
u
9
+ 7u
8
6u
7
+ 16u
6
11u
5
+ 13u
4
6u
3
+ 3u
2
u 1)
2
· (u
16
+ 3u
15
+ ··· + 6u + 2)
c
6
, c
11
, c
12
((u 1)
2
)(u + 1)
3
(u
16
u
15
+ ··· + u + 1)(u
20
u
19
+ ··· + 9u 8)
24
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
5
)(y
16
+ 19y
15
+ ··· + 23y + 1)
· (y
20
+ 3y
19
+ ··· + 2431y + 4096)
c
2
, c
6
, c
7
c
11
, c
12
((y 1)
5
)(y
16
5y
15
+ ··· y + 1)(y
20
9y
19
+ ··· 385y + 64)
c
3
y(y + 1)
2
(y + 3)
2
(y
10
11y
9
+ ··· 7y + 1)
2
· (y
16
3y
15
+ ··· + 33320y + 3364)
c
4
, c
5
, c
8
c
9
, c
10
y(y + 1)
2
(y + 3)
2
(y
10
+ 13y
9
+ ··· 7y + 1)
2
· (y
16
+ 21y
15
+ ··· + 24y + 4)
25