12n
0585
(K12n
0585
)
A knot diagram
1
Linearized knot diagam
3 7 12 10 9 2 11 3 5 7 4 8
Solving Sequence
4,11 8,12
1 3 7 2 6 10 5 9
c
11
c
12
c
3
c
7
c
2
c
6
c
10
c
4
c
9
c
1
, c
5
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−3u
19
26u
18
+ ··· + 2b + 8, u
19
+ 13u
18
+ ··· + 2a 25, u
20
+ 8u
19
+ ··· 10u 4i
I
u
2
= h367u
4
a
3
289u
4
a
2
+ ··· + 163a 69, u
4
a 9u
4
+ ··· 2a
3
+ 3a
2
, u
5
u
4
+ 2u
3
u
2
+ u 1i
I
u
3
= hu
12
2u
11
+ 8u
10
12u
9
+ 23u
8
26u
7
+ 31u
6
25u
5
+ 19u
4
8u
3
+ 3u
2
+ b + u 1,
4u
12
+ 12u
11
+ ··· + 3a 5,
u
13
3u
12
+ 11u
11
22u
10
+ 43u
9
62u
8
+ 82u
7
89u
6
+ 85u
5
68u
4
+ 46u
3
25u
2
+ 11u 3i
* 3 irreducible components of dim
C
= 0, with total 53 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−3u
19
26u
18
+· · ·+2b+8, u
19
+13u
18
+· · ·+2a25, u
20
+8u
19
+· · ·10u4i
(i) Arc colorings
a
4
=
0
u
a
11
=
1
0
a
8
=
1
2
u
19
13
2
u
18
+ ··· +
59
2
u +
25
2
3
2
u
19
+ 13u
18
+ ···
37
2
u 4
a
12
=
1
u
2
a
1
=
1
4
u
19
+
3
2
u
18
+ ··· +
3
4
u + 1
1
2
u
19
3u
18
+ ··· +
3
2
u + 1
a
3
=
u
u
3
+ u
a
7
=
u
19
+
13
2
u
18
+ ··· + 11u +
17
2
3
2
u
19
+ 13u
18
+ ···
37
2
u 4
a
2
=
1
4
u
19
+
3
2
u
18
+ ···
5
4
u 1
1
2
u
19
+ 3u
18
+ ···
1
2
u 1
a
6
=
7
4
u
19
+
25
2
u
18
+ ··· +
9
4
u + 3
3
2
u
19
+ 11u
18
+ ···
43
2
u 9
a
10
=
3
4
u
19
+
9
2
u
18
+ ··· +
1
4
u + 3
3
2
u
19
+ 11u
18
+ ···
19
2
u 3
a
5
=
u
19
11
2
u
18
+ ··· 13u
21
2
7
2
u
19
27u
18
+ ··· +
67
2
u + 10
a
9
=
3
2
u
19
+
21
2
u
18
+ ··· +
9
2
u +
5
2
3
2
u
19
+ 12u
18
+ ···
51
2
u 10
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 3u
19
+ 21u
18
+ 95u
17
+ 306u
16
+ 777u
15
+ 1606u
14
+ 2750u
13
+ 3938u
12
+ 4673u
11
+
4519u
10
+ 3361u
9
+ 1582u
8
119u
7
1191u
6
1413u
5
1054u
4
527u
3
148u
2
6u + 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
20
+ 29u
19
+ ··· + 6u + 1
c
2
, c
6
, c
12
u
20
u
19
+ ··· + 3u
2
1
c
3
, c
11
u
20
8u
19
+ ··· + 10u 4
c
4
, c
5
, c
9
u
20
+ 11u
19
+ ··· + 352u + 32
c
7
, c
10
u
20
+ u
19
+ ··· u 1
c
8
u
20
20u
18
+ ··· + 363u + 389
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
20
77y
19
+ ··· 30y + 1
c
2
, c
6
, c
12
y
20
29y
19
+ ··· 6y + 1
c
3
, c
11
y
20
+ 16y
19
+ ··· 124y + 16
c
4
, c
5
, c
9
y
20
+ 17y
19
+ ··· 8704y + 1024
c
7
, c
10
y
20
19y
19
+ ··· 11y + 1
c
8
y
20
40y
19
+ ··· 327047y + 151321
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.307939 + 0.948375I
a = 0.05622 + 1.79329I
b = 1.20587 0.93158I
3.89445 + 4.62827I 7.73780 0.37198I
u = 0.307939 0.948375I
a = 0.05622 1.79329I
b = 1.20587 + 0.93158I
3.89445 4.62827I 7.73780 + 0.37198I
u = 0.186964 + 0.988512I
a = 0.089455 + 0.771960I
b = 0.364770 0.350879I
1.95473 1.84370I 7.61677 + 4.71510I
u = 0.186964 0.988512I
a = 0.089455 0.771960I
b = 0.364770 + 0.350879I
1.95473 + 1.84370I 7.61677 4.71510I
u = 0.219887 + 0.859832I
a = 0.26086 1.47452I
b = 1.050500 + 0.454707I
0.445235 + 1.140740I 12.74589 1.01888I
u = 0.219887 0.859832I
a = 0.26086 + 1.47452I
b = 1.050500 0.454707I
0.445235 1.140740I 12.74589 + 1.01888I
u = 1.165370 + 0.101289I
a = 0.249791 0.036181I
b = 1.44567 0.47752I
10.71860 7.16687I 14.7672 + 3.4591I
u = 1.165370 0.101289I
a = 0.249791 + 0.036181I
b = 1.44567 + 0.47752I
10.71860 + 7.16687I 14.7672 3.4591I
u = 1.17535
a = 0.236789
b = 1.58721
15.2605 16.9350
u = 0.319592 + 0.523784I
a = 0.734866 + 1.076110I
b = 0.821178 + 0.439010I
2.81143 1.78462I 5.22189 + 4.40876I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.319592 0.523784I
a = 0.734866 1.076110I
b = 0.821178 0.439010I
2.81143 + 1.78462I 5.22189 4.40876I
u = 0.62192 + 1.33439I
a = 0.48413 1.57383I
b = 1.48076 + 0.92864I
6.9069 + 13.4360I 11.74255 6.57313I
u = 0.62192 1.33439I
a = 0.48413 + 1.57383I
b = 1.48076 0.92864I
6.9069 13.4360I 11.74255 + 6.57313I
u = 0.61063 + 1.39810I
a = 0.81610 + 1.20565I
b = 1.46551 0.44107I
10.94070 + 6.30161I 14.3965 3.2767I
u = 0.61063 1.39810I
a = 0.81610 1.20565I
b = 1.46551 + 0.44107I
10.94070 6.30161I 14.3965 + 3.2767I
u = 0.09565 + 1.60341I
a = 0.332044 0.380939I
b = 0.073621 + 0.411439I
10.12870 1.84544I 0.92402 + 4.93320I
u = 0.09565 1.60341I
a = 0.332044 + 0.380939I
b = 0.073621 0.411439I
10.12870 + 1.84544I 0.92402 4.93320I
u = 0.57369 + 1.50037I
a = 0.895185 0.618003I
b = 1.119450 0.042363I
5.72650 0.92873I 13.76270 + 0.38685I
u = 0.57369 1.50037I
a = 0.895185 + 0.618003I
b = 1.119450 + 0.042363I
5.72650 + 0.92873I 13.76270 0.38685I
u = 0.248179
a = 1.28936
b = 0.256367
0.545579 18.2350
6
II. I
u
2
= h367u
4
a
3
289u
4
a
2
+ · · · + 163a 69, u
4
a 9u
4
+ · · · 2a
3
+
3a
2
, u
5
u
4
+ 2u
3
u
2
+ u 1i
(i) Arc colorings
a
4
=
0
u
a
11
=
1
0
a
8
=
a
1.80788a
3
u
4
+ 1.42365a
2
u
4
+ ··· 0.802956a + 0.339901
a
12
=
1
u
2
a
1
=
0.817734a
3
u
4
+ 1.02463a
2
u
4
+ ··· 0.556650a + 2.72906
8
7
u
4
a
2
4
7
u
4
+ ···
6
7
a
2
+
4
7
a
3
=
u
u
3
+ u
a
7
=
1.80788a
3
u
4
+ 1.42365a
2
u
4
+ ··· + 0.197044a + 0.339901
1.80788a
3
u
4
+ 1.42365a
2
u
4
+ ··· 0.802956a + 0.339901
a
2
=
1.31527a
3
u
4
+ 1.80296a
2
u
4
+ ··· 1.11823a + 2.16749
1.20197a
3
u
4
+ 1.03448a
2
u
4
+ ··· 0.950739a + 0.620690
a
6
=
0.945813a
3
u
4
+ 0.837438a
2
u
4
+ ··· 1.35468a 1.21182
0.359606a
3
u
4
+ 0.492611a
2
u
4
+ ··· + 0.00985222a + 0.581281
a
10
=
0.945813a
3
u
4
0.837438a
2
u
4
+ ··· + 1.35468a 0.788177
0.128079a
3
u
4
+ 0.187192a
2
u
4
+ ··· + 0.798030a 0.0591133
a
5
=
0.945813a
3
u
4
0.837438a
2
u
4
+ ··· + 1.35468a + 0.211823
0.133005a
3
u
4
0.399015a
2
u
4
+ ··· + 0.674877a 0.610837
a
9
=
0.945813a
3
u
4
0.837438a
2
u
4
+ ··· + 1.35468a + 0.211823
0.364532a
3
u
4
+ 0.0935961a
2
u
4
+ ··· + 0.113300a 0.0295567
(ii) Obstruction class = 1
(iii) Cusp Shapes =
492
203
u
4
a
3
+
664
203
u
4
a
2
+ ···
692
203
a
2026
203
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
20
+ 25u
19
+ ··· + 3332u + 10609
c
2
, c
6
, c
12
u
20
u
19
+ ··· + 6u + 103
c
3
, c
11
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
4
c
4
, c
5
, c
9
(u
2
u + 1)
10
c
7
, c
10
u
20
+ 5u
19
+ ··· 8u + 1
c
8
u
20
+ u
19
+ ··· + 1242u + 1549
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
20
53y
19
+ ··· + 3723477956y + 112550881
c
2
, c
6
, c
12
y
20
25y
19
+ ··· 3332y + 10609
c
3
, c
11
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
4
c
4
, c
5
, c
9
(y
2
+ y + 1)
10
c
7
, c
10
y
20
5y
19
+ ··· + 212y + 1
c
8
y
20
33y
19
+ ··· 1381468y + 2399401
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.339110 + 0.822375I
a = 1.24082 + 0.82885I
b = 0.839233 + 0.066856I
4.60570 0.49930I 15.4849 0.9665I
u = 0.339110 + 0.822375I
a = 1.51588 + 1.67630I
b = 1.43083 1.67189I
4.60570 + 3.56046I 15.4849 7.8947I
u = 0.339110 + 0.822375I
a = 1.09190 2.13507I
b = 0.0324686 0.0684453I
4.60570 + 3.56046I 15.4849 7.8947I
u = 0.339110 + 0.822375I
a = 0.46038 2.85787I
b = 0.03124 + 2.01433I
4.60570 0.49930I 15.4849 0.9665I
u = 0.339110 0.822375I
a = 1.24082 0.82885I
b = 0.839233 0.066856I
4.60570 + 0.49930I 15.4849 + 0.9665I
u = 0.339110 0.822375I
a = 1.51588 1.67630I
b = 1.43083 + 1.67189I
4.60570 3.56046I 15.4849 + 7.8947I
u = 0.339110 0.822375I
a = 1.09190 + 2.13507I
b = 0.0324686 + 0.0684453I
4.60570 3.56046I 15.4849 + 7.8947I
u = 0.339110 0.822375I
a = 0.46038 + 2.85787I
b = 0.03124 2.01433I
4.60570 + 0.49930I 15.4849 + 0.9665I
u = 0.766826
a = 0.651697 + 0.410335I
b = 1.034330 0.571171I
2.53372 + 2.02988I 14.5189 3.4641I
u = 0.766826
a = 0.651697 0.410335I
b = 1.034330 + 0.571171I
2.53372 2.02988I 14.5189 + 3.4641I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.766826
a = 0.055956 + 0.621518I
b = 1.292890 + 0.123332I
2.53372 + 2.02988I 14.5189 3.4641I
u = 0.766826
a = 0.055956 0.621518I
b = 1.292890 0.123332I
2.53372 2.02988I 14.5189 + 3.4641I
u = 0.455697 + 1.200150I
a = 0.846255 0.412340I
b = 1.265170 0.048633I
0.93776 2.37095I 11.25569 + 0.03448I
u = 0.455697 + 1.200150I
a = 0.429720 + 1.227490I
b = 0.744138 0.292701I
0.93776 2.37095I 11.25569 + 0.03448I
u = 0.455697 + 1.200150I
a = 0.11602 1.56704I
b = 1.022890 + 0.683808I
0.93776 6.43072I 11.25569 + 6.96269I
u = 0.455697 + 1.200150I
a = 0.79819 + 1.52019I
b = 1.57901 0.96437I
0.93776 6.43072I 11.25569 + 6.96269I
u = 0.455697 1.200150I
a = 0.846255 + 0.412340I
b = 1.265170 + 0.048633I
0.93776 + 2.37095I 11.25569 0.03448I
u = 0.455697 1.200150I
a = 0.429720 1.227490I
b = 0.744138 + 0.292701I
0.93776 + 2.37095I 11.25569 0.03448I
u = 0.455697 1.200150I
a = 0.11602 + 1.56704I
b = 1.022890 0.683808I
0.93776 + 6.43072I 11.25569 6.96269I
u = 0.455697 1.200150I
a = 0.79819 1.52019I
b = 1.57901 + 0.96437I
0.93776 + 6.43072I 11.25569 6.96269I
11
III. I
u
3
=
hu
12
2u
11
+· · ·+b1, 4u
12
+12u
11
+· · ·+3a5, u
13
3u
12
+· · ·+11u3i
(i) Arc colorings
a
4
=
0
u
a
11
=
1
0
a
8
=
4
3
u
12
4u
11
+ ···
31
3
u +
5
3
u
12
+ 2u
11
+ ··· u + 1
a
12
=
1
u
2
a
1
=
2
3
u
12
+ 3u
11
+ ··· +
14
3
u +
2
3
u
12
3u
11
+ ··· 3u + 1
a
3
=
u
u
3
+ u
a
7
=
1
3
u
12
2u
11
+ ···
34
3
u +
8
3
u
12
+ 2u
11
+ ··· u + 1
a
2
=
1
3
u
12
+
2
3
u
10
+ ··· +
8
3
u +
2
3
u
12
3u
11
+ ··· 2u + 1
a
6
=
u
3
+ u
2
2u + 1
u
12
3u
11
+ ··· 15u
3
+ 4u
2
a
10
=
1
3
u
12
+ u
11
+ ··· +
4
3
u
2
3
u
10
+ 2u
9
+ ··· + 2u 1
a
5
=
2
3
u
12
2u
11
+ ···
17
3
u +
7
3
2u
11
+ 4u
10
+ ··· 5u + 2
a
9
=
1
3
u
12
u
11
+ ···
19
3
u +
5
3
u
12
+ 3u
11
+ ··· 6u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
12
+ 10u
11
33u
10
+ 69u
9
123u
8
+ 178u
7
216u
6
+
227u
5
200u
4
+ 145u
3
88u
2
+ 40u 24
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
13
13u
12
+ ··· + 8u 1
c
2
u
13
u
12
+ ··· + 4u
2
1
c
3
u
13
+ 3u
12
+ ··· + 11u + 3
c
4
, c
5
u
13
+ 8u
11
+ ··· + 5u 1
c
6
, c
12
u
13
+ u
12
+ ··· 4u
2
+ 1
c
7
u
13
+ u
12
u
11
u
10
+ 4u
9
5u
7
+ 2u
5
+ 4u
3
3u 1
c
8
u
13
6u
11
+ ··· + 3u 1
c
9
u
13
+ 8u
11
+ ··· + 5u + 1
c
10
u
13
u
12
u
11
+ u
10
+ 4u
9
5u
7
+ 2u
5
+ 4u
3
3u + 1
c
11
u
13
3u
12
+ ··· + 11u 3
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
13
21y
12
+ ··· + 4y 1
c
2
, c
6
, c
12
y
13
13y
12
+ ··· + 8y 1
c
3
, c
11
y
13
+ 13y
12
+ ··· 29y 9
c
4
, c
5
, c
9
y
13
+ 16y
12
+ ··· + 11y 1
c
7
, c
10
y
13
3y
12
+ ··· + 9y 1
c
8
y
13
12y
12
+ ··· + 41y 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.311964 + 1.093350I
a = 0.774593 1.109310I
b = 0.010328 + 0.900690I
2.95271 0.68897I 9.08547 + 0.28804I
u = 0.311964 1.093350I
a = 0.774593 + 1.109310I
b = 0.010328 0.900690I
2.95271 + 0.68897I 9.08547 0.28804I
u = 0.183411 + 0.836579I
a = 0.25418 + 2.22881I
b = 0.776793 1.074250I
4.00352 + 2.67216I 9.27660 0.66182I
u = 0.183411 0.836579I
a = 0.25418 2.22881I
b = 0.776793 + 1.074250I
4.00352 2.67216I 9.27660 + 0.66182I
u = 0.693444 + 0.482308I
a = 0.323041 0.669219I
b = 1.008100 0.435989I
1.92069 + 1.38967I 14.4640 0.3073I
u = 0.693444 0.482308I
a = 0.323041 + 0.669219I
b = 1.008100 + 0.435989I
1.92069 1.38967I 14.4640 + 0.3073I
u = 0.444029 + 1.081590I
a = 0.07761 1.60889I
b = 1.22506 + 0.94731I
3.77211 5.65024I 8.73340 + 7.27407I
u = 0.444029 1.081590I
a = 0.07761 + 1.60889I
b = 1.22506 0.94731I
3.77211 + 5.65024I 8.73340 7.27407I
u = 0.381547 + 1.261190I
a = 0.456024 + 1.005740I
b = 0.955954 0.399007I
1.15315 3.75548I 9.16700 + 5.96823I
u = 0.381547 1.261190I
a = 0.456024 1.005740I
b = 0.955954 + 0.399007I
1.15315 + 3.75548I 9.16700 5.96823I
15
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.660856
a = 0.486065
b = 0.947145
2.65768 15.1330
u = 0.14593 + 1.67508I
a = 0.499419 0.221002I
b = 0.483481 0.069018I
9.66379 1.70084I 17.2072 0.2320I
u = 0.14593 1.67508I
a = 0.499419 + 0.221002I
b = 0.483481 + 0.069018I
9.66379 + 1.70084I 17.2072 + 0.2320I
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
13
13u
12
+ ··· + 8u 1)(u
20
+ 25u
19
+ ··· + 3332u + 10609)
· (u
20
+ 29u
19
+ ··· + 6u + 1)
c
2
(u
13
u
12
+ ··· + 4u
2
1)(u
20
u
19
+ ··· + 3u
2
1)
· (u
20
u
19
+ ··· + 6u + 103)
c
3
((u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
4
)(u
13
+ 3u
12
+ ··· + 11u + 3)
· (u
20
8u
19
+ ··· + 10u 4)
c
4
, c
5
((u
2
u + 1)
10
)(u
13
+ 8u
11
+ ··· + 5u 1)
· (u
20
+ 11u
19
+ ··· + 352u + 32)
c
6
, c
12
(u
13
+ u
12
+ ··· 4u
2
+ 1)(u
20
u
19
+ ··· + 3u
2
1)
· (u
20
u
19
+ ··· + 6u + 103)
c
7
(u
13
+ u
12
u
11
u
10
+ 4u
9
5u
7
+ 2u
5
+ 4u
3
3u 1)
· (u
20
+ u
19
+ ··· u 1)(u
20
+ 5u
19
+ ··· 8u + 1)
c
8
(u
13
6u
11
+ ··· + 3u 1)(u
20
20u
18
+ ··· + 363u + 389)
· (u
20
+ u
19
+ ··· + 1242u + 1549)
c
9
((u
2
u + 1)
10
)(u
13
+ 8u
11
+ ··· + 5u + 1)
· (u
20
+ 11u
19
+ ··· + 352u + 32)
c
10
(u
13
u
12
u
11
+ u
10
+ 4u
9
5u
7
+ 2u
5
+ 4u
3
3u + 1)
· (u
20
+ u
19
+ ··· u 1)(u
20
+ 5u
19
+ ··· 8u + 1)
c
11
((u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
4
)(u
13
3u
12
+ ··· + 11u 3)
· (u
20
8u
19
+ ··· + 10u 4)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
13
21y
12
+ ··· + 4y 1)(y
20
77y
19
+ ··· 30y + 1)
· (y
20
53y
19
+ ··· + 3723477956y + 112550881)
c
2
, c
6
, c
12
(y
13
13y
12
+ ··· + 8y 1)(y
20
29y
19
+ ··· 6y + 1)
· (y
20
25y
19
+ ··· 3332y + 10609)
c
3
, c
11
((y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
4
)(y
13
+ 13y
12
+ ··· 29y 9)
· (y
20
+ 16y
19
+ ··· 124y + 16)
c
4
, c
5
, c
9
((y
2
+ y + 1)
10
)(y
13
+ 16y
12
+ ··· + 11y 1)
· (y
20
+ 17y
19
+ ··· 8704y + 1024)
c
7
, c
10
(y
13
3y
12
+ ··· + 9y 1)(y
20
19y
19
+ ··· 11y + 1)
· (y
20
5y
19
+ ··· + 212y + 1)
c
8
(y
13
12y
12
+ ··· + 41y 1)(y
20
40y
19
+ ··· 327047y + 151321)
· (y
20
33y
19
+ ··· 1381468y + 2399401)
18