12n
0590
(K12n
0590
)
A knot diagram
1
Linearized knot diagam
3 7 11 7 10 2 4 12 3 5 8 9
Solving Sequence
8,11
12 9
1,4
3 7 5 2 6 10
c
11
c
8
c
12
c
3
c
7
c
4
c
2
c
6
c
10
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h24558310627155u
21
+ 76226351773367u
20
+ ··· + 826989943797623b 264882167921191,
1.11442 × 10
15
u
21
1.96283 × 10
15
u
20
+ ··· + 5.78893 × 10
15
a + 1.82405 × 10
14
, u
22
+ u
21
+ ··· 12u + 7i
I
u
2
= h−u
7
+ 5u
5
+ u
4
7u
3
2u
2
+ b + 2u, u
10
8u
8
+ 23u
6
u
5
29u
4
+ 4u
3
+ 15u
2
+ a 4u 1,
u
11
8u
9
u
8
+ 23u
7
+ 5u
6
28u
5
7u
4
+ 13u
3
+ 2u
2
2u 1i
* 2 irreducible components of dim
C
= 0, with total 33 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h2.46×10
13
u
21
+7.62×10
13
u
20
+· · ·+8.27×10
14
b2.65×10
14
, 1.11×
10
15
u
21
1.96×10
15
u
20
+· · ·+5.79×10
15
a+1.82×10
14
, u
22
+u
21
+· · ·12u+7i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
9
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
4
=
0.192509u
21
+ 0.339065u
20
+ ··· + 1.66279u 0.0315092
0.0296960u
21
0.0921733u
20
+ ··· 0.726566u + 0.320297
a
3
=
0.162813u
21
+ 0.246892u
20
+ ··· + 0.936221u + 0.288788
0.0296960u
21
0.0921733u
20
+ ··· 0.726566u + 0.320297
a
7
=
0.308808u
21
0.423908u
20
+ ··· 4.90570u + 3.29659
0.0596766u
21
0.0810654u
20
+ ··· + 1.56726u + 0.227107
a
5
=
0.193496u
21
0.277468u
20
+ ··· + 1.30428u + 0.534875
0.117215u
21
+ 0.139319u
20
+ ··· 0.863885u 0.561596
a
2
=
0.340275u
21
0.520418u
20
+ ··· 1.11925u + 4.17997
0.0351453u
21
0.0475187u
20
+ ··· 0.171350u 0.289676
a
6
=
0.285354u
21
+ 0.292486u
20
+ ··· 3.40992u 0.148449
0.0727430u
21
0.200381u
20
+ ··· + 1.21818u + 0.857957
a
10
=
0.115641u
21
0.306721u
20
+ ··· 4.96241u + 2.03078
0.148193u
21
+ 0.158198u
20
+ ··· + 1.75028u 0.764596
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
5642994687059
826989943797623
u
21
+
135118301910616
826989943797623
u
20
+ ··· +
9106726180669764
826989943797623
u
9982429531246890
826989943797623
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
22
+ 44u
21
+ ··· + 111391u + 14641
c
2
, c
6
u
22
22u
20
+ ··· 95u 121
c
3
u
22
+ 3u
21
+ ··· 13u 5
c
4
, c
7
u
22
+ 5u
21
+ ··· + 2u + 1
c
5
, c
10
u
22
u
21
+ ··· 123u 173
c
8
, c
11
, c
12
u
22
+ u
21
+ ··· 12u + 7
c
9
u
22
6u
21
+ ··· 66255u 6691
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
22
140y
21
+ ··· 15971954947y + 214358881
c
2
, c
6
y
22
44y
21
+ ··· 111391y + 14641
c
3
y
22
3y
21
+ ··· 319y + 25
c
4
, c
7
y
22
+ 21y
21
+ ··· 40y + 1
c
5
, c
10
y
22
9y
21
+ ··· 332065y + 29929
c
8
, c
11
, c
12
y
22
37y
21
+ ··· 186y + 49
c
9
y
22
122y
21
+ ··· 1381946559y + 44769481
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.813375 + 0.695520I
a = 0.621272 + 0.888438I
b = 0.930849 0.474906I
3.57261 + 1.24203I 13.51654 2.69011I
u = 0.813375 0.695520I
a = 0.621272 0.888438I
b = 0.930849 + 0.474906I
3.57261 1.24203I 13.51654 + 2.69011I
u = 1.14577
a = 1.21118
b = 0.786013
5.50697 18.3200
u = 0.689625 + 0.112216I
a = 0.60149 + 2.27758I
b = 0.783398 0.626729I
2.94663 + 3.18256I 14.1931 4.5682I
u = 0.689625 0.112216I
a = 0.60149 2.27758I
b = 0.783398 + 0.626729I
2.94663 3.18256I 14.1931 + 4.5682I
u = 1.42854 + 0.12438I
a = 0.118525 + 0.124764I
b = 0.515254 0.715646I
3.21068 1.94100I 8.44193 + 4.49457I
u = 1.42854 0.12438I
a = 0.118525 0.124764I
b = 0.515254 + 0.715646I
3.21068 + 1.94100I 8.44193 4.49457I
u = 0.439809 + 0.342493I
a = 0.658925 0.629517I
b = 0.104940 + 1.110730I
2.79807 1.24078I 2.39806 + 5.78935I
u = 0.439809 0.342493I
a = 0.658925 + 0.629517I
b = 0.104940 1.110730I
2.79807 + 1.24078I 2.39806 5.78935I
u = 1.47818 + 0.29462I
a = 0.196203 + 1.126150I
b = 0.95775 1.05246I
10.23510 1.31699I 13.69750 + 1.12150I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.47818 0.29462I
a = 0.196203 1.126150I
b = 0.95775 + 1.05246I
10.23510 + 1.31699I 13.69750 1.12150I
u = 0.389548
a = 0.489094
b = 0.423427
0.651086 15.1770
u = 0.055531 + 0.375870I
a = 3.27936 0.40059I
b = 0.735830 + 0.136693I
1.05201 + 2.37866I 7.37484 + 0.30199I
u = 0.055531 0.375870I
a = 3.27936 + 0.40059I
b = 0.735830 0.136693I
1.05201 2.37866I 7.37484 0.30199I
u = 1.54618 + 0.54222I
a = 0.045294 + 0.967197I
b = 1.17072 0.88115I
11.07800 6.11809I 13.7689 + 3.7652I
u = 1.54618 0.54222I
a = 0.045294 0.967197I
b = 1.17072 + 0.88115I
11.07800 + 6.11809I 13.7689 3.7652I
u = 1.78595
a = 1.55694
b = 0.706857
16.3042 23.6750
u = 1.92376 + 0.13131I
a = 0.017132 + 0.779055I
b = 1.13005 1.28185I
16.3680 1.4414I 13.10276 + 0.15786I
u = 1.92376 0.13131I
a = 0.017132 0.779055I
b = 1.13005 + 1.28185I
16.3680 + 1.4414I 13.10276 0.15786I
u = 1.92464 + 0.18067I
a = 0.224483 + 0.973602I
b = 1.24119 1.08462I
15.7619 + 10.2221I 12.91781 4.03002I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.92464 0.18067I
a = 0.224483 0.973602I
b = 1.24119 + 1.08462I
15.7619 10.2221I 12.91781 + 4.03002I
u = 2.00938
a = 0.119138
b = 1.03398
17.7473 16.0060
7
II. I
u
2
=
h−u
7
+5u
5
+u
4
7u
3
2u
2
+b+2u, u
10
8u
8
+· · ·+a1, u
11
8u
9
+· · ·2u1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
9
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
4
=
u
10
+ 8u
8
23u
6
+ u
5
+ 29u
4
4u
3
15u
2
+ 4u + 1
u
7
5u
5
u
4
+ 7u
3
+ 2u
2
2u
a
3
=
u
10
+ 8u
8
+ u
7
23u
6
4u
5
+ 28u
4
+ 3u
3
13u
2
+ 2u + 1
u
7
5u
5
u
4
+ 7u
3
+ 2u
2
2u
a
7
=
u
8
u
7
+ 6u
6
+ 6u
5
11u
4
10u
3
+ 7u
2
+ 4u 3
u
10
+ 7u
8
+ u
7
17u
6
4u
5
+ 17u
4
+ 4u
3
7u
2
+ 1
a
5
=
u
10
8u
8
u
7
+ 23u
6
+ 5u
5
28u
4
6u
3
+ 14u
2
3
u
10
+ 7u
8
+ u
7
17u
6
4u
5
+ 16u
4
+ 4u
3
4u
2
a
2
=
u
8
+ u
7
6u
6
5u
5
+ 11u
4
+ 7u
3
7u
2
2u + 2
u
7
5u
5
2u
4
+ 7u
3
+ 5u
2
2u 1
a
6
=
u
10
7u
8
u
7
+ 18u
6
+ 5u
5
20u
4
7u
3
+ 9u
2
+ 2u 2
u
7
+ 5u
5
+ u
4
7u
3
3u
2
+ 2u + 1
a
10
=
u
9
+ u
8
6u
7
6u
6
+ 11u
5
+ 10u
4
7u
3
3u
2
+ 3u
u
3
+ 2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 2u
10
2u
9
17u
8
+ 12u
7
+ 54u
6
24u
5
73u
4
+ 21u
3
+ 35u
2
12u 17
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
11
11u
10
+ ··· + 5u 1
c
2
u
11
3u
10
u
9
+ 8u
8
2u
7
10u
6
+ 5u
5
+ 6u
4
5u
3
2u
2
+ 3u 1
c
3
u
11
2u
10
+ 3u
9
2u
8
+ u
7
+ u
6
u
5
+ u
4
+ 5u
3
4u
2
u + 1
c
4
u
11
+ 3u
9
6u
8
+ u
7
20u
6
4u
5
26u
4
6u
3
15u
2
4u 3
c
5
u
11
+ 4u
9
u
8
+ 4u
7
4u
6
u
5
5u
4
2u
3
3u
2
u 1
c
6
u
11
+ 3u
10
u
9
8u
8
2u
7
+ 10u
6
+ 5u
5
6u
4
5u
3
+ 2u
2
+ 3u + 1
c
7
u
11
+ 3u
9
+ 6u
8
+ u
7
+ 20u
6
4u
5
+ 26u
4
6u
3
+ 15u
2
4u + 3
c
8
u
11
8u
9
+ u
8
+ 23u
7
5u
6
28u
5
+ 7u
4
+ 13u
3
2u
2
2u + 1
c
9
u
11
5u
10
+ ··· + 5u 1
c
10
u
11
+ 4u
9
+ u
8
+ 4u
7
+ 4u
6
u
5
+ 5u
4
2u
3
+ 3u
2
u + 1
c
11
, c
12
u
11
8u
9
u
8
+ 23u
7
+ 5u
6
28u
5
7u
4
+ 13u
3
+ 2u
2
2u 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
11
31y
10
+ ··· 19y 1
c
2
, c
6
y
11
11y
10
+ ··· + 5y 1
c
3
y
11
+ 2y
10
+ ··· + 9y 1
c
4
, c
7
y
11
+ 6y
10
+ ··· 74y 9
c
5
, c
10
y
11
+ 8y
10
+ ··· 5y 1
c
8
, c
11
, c
12
y
11
16y
10
+ ··· + 8y 1
c
9
y
11
33y
10
+ ··· 11y 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.137090 + 0.296275I
a = 0.112692 0.807373I
b = 0.583202 0.143276I
4.14701 1.11671I 15.2828 + 0.9622I
u = 1.137090 0.296275I
a = 0.112692 + 0.807373I
b = 0.583202 + 0.143276I
4.14701 + 1.11671I 15.2828 0.9622I
u = 0.592958 + 0.265544I
a = 0.648705 0.517226I
b = 0.224636 + 1.262620I
2.05237 0.90366I 12.99258 + 0.59002I
u = 0.592958 0.265544I
a = 0.648705 + 0.517226I
b = 0.224636 1.262620I
2.05237 + 0.90366I 12.99258 0.59002I
u = 1.52480 + 0.07903I
a = 0.465943 + 0.973368I
b = 1.133880 0.701740I
7.77644 4.37367I 13.16320 + 3.47973I
u = 1.52480 0.07903I
a = 0.465943 0.973368I
b = 1.133880 + 0.701740I
7.77644 + 4.37367I 13.16320 3.47973I
u = 1.59014 + 0.09758I
a = 0.004921 0.710560I
b = 0.62219 + 1.27817I
5.52612 + 2.32410I 12.39685 2.31746I
u = 1.59014 0.09758I
a = 0.004921 + 0.710560I
b = 0.62219 1.27817I
5.52612 2.32410I 12.39685 + 2.31746I
u = 0.300210 + 0.263166I
a = 1.31732 + 2.93205I
b = 0.867895 0.444411I
1.38510 + 3.17083I 10.45196 6.81024I
u = 0.300210 0.263166I
a = 1.31732 2.93205I
b = 0.867895 + 0.444411I
1.38510 3.17083I 10.45196 + 6.81024I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.81936
a = 1.07948
b = 0.493485
15.7834 7.42530
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
11
11u
10
+ ··· + 5u 1)(u
22
+ 44u
21
+ ··· + 111391u + 14641)
c
2
(u
11
3u
10
u
9
+ 8u
8
2u
7
10u
6
+ 5u
5
+ 6u
4
5u
3
2u
2
+ 3u 1)
· (u
22
22u
20
+ ··· 95u 121)
c
3
(u
11
2u
10
+ 3u
9
2u
8
+ u
7
+ u
6
u
5
+ u
4
+ 5u
3
4u
2
u + 1)
· (u
22
+ 3u
21
+ ··· 13u 5)
c
4
(u
11
+ 3u
9
6u
8
+ u
7
20u
6
4u
5
26u
4
6u
3
15u
2
4u 3)
· (u
22
+ 5u
21
+ ··· + 2u + 1)
c
5
(u
11
+ 4u
9
u
8
+ 4u
7
4u
6
u
5
5u
4
2u
3
3u
2
u 1)
· (u
22
u
21
+ ··· 123u 173)
c
6
(u
11
+ 3u
10
u
9
8u
8
2u
7
+ 10u
6
+ 5u
5
6u
4
5u
3
+ 2u
2
+ 3u + 1)
· (u
22
22u
20
+ ··· 95u 121)
c
7
(u
11
+ 3u
9
+ 6u
8
+ u
7
+ 20u
6
4u
5
+ 26u
4
6u
3
+ 15u
2
4u + 3)
· (u
22
+ 5u
21
+ ··· + 2u + 1)
c
8
(u
11
8u
9
+ u
8
+ 23u
7
5u
6
28u
5
+ 7u
4
+ 13u
3
2u
2
2u + 1)
· (u
22
+ u
21
+ ··· 12u + 7)
c
9
(u
11
5u
10
+ ··· + 5u 1)(u
22
6u
21
+ ··· 66255u 6691)
c
10
(u
11
+ 4u
9
+ u
8
+ 4u
7
+ 4u
6
u
5
+ 5u
4
2u
3
+ 3u
2
u + 1)
· (u
22
u
21
+ ··· 123u 173)
c
11
, c
12
(u
11
8u
9
u
8
+ 23u
7
+ 5u
6
28u
5
7u
4
+ 13u
3
+ 2u
2
2u 1)
· (u
22
+ u
21
+ ··· 12u + 7)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
11
31y
10
+ ··· 19y 1)
· (y
22
140y
21
+ ··· 15971954947y + 214358881)
c
2
, c
6
(y
11
11y
10
+ ··· + 5y 1)(y
22
44y
21
+ ··· 111391y + 14641)
c
3
(y
11
+ 2y
10
+ ··· + 9y 1)(y
22
3y
21
+ ··· 319y + 25)
c
4
, c
7
(y
11
+ 6y
10
+ ··· 74y 9)(y
22
+ 21y
21
+ ··· 40y + 1)
c
5
, c
10
(y
11
+ 8y
10
+ ··· 5y 1)(y
22
9y
21
+ ··· 332065y + 29929)
c
8
, c
11
, c
12
(y
11
16y
10
+ ··· + 8y 1)(y
22
37y
21
+ ··· 186y + 49)
c
9
(y
11
33y
10
+ ··· 11y 1)
· (y
22
122y
21
+ ··· 1381946559y + 44769481)
14