12n
0591
(K12n
0591
)
A knot diagram
1
Linearized knot diagam
3 7 11 8 10 2 5 12 3 5 8 9
Solving Sequence
8,12
9 1
3,11
4 5 7 2 6 10
c
8
c
12
c
11
c
3
c
4
c
7
c
2
c
6
c
10
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
6
+ 3u
5
+ 3u
4
17u
3
+ 12u
2
+ b + 4u 2, 2u
7
9u
6
+ 2u
5
+ 44u
4
70u
3
+ 21u
2
+ a + 16u 4,
u
8
4u
7
u
6
+ 22u
5
25u
4
4u
3
+ 12u
2
+ u 1i
I
u
2
= hu
4
+ 2u
3
u
2
+ b u, u
4
+ 3u
3
+ u
2
+ a 2u 1, u
5
+ 3u
4
3u
2
+ u 1i
* 2 irreducible components of dim
C
= 0, with total 13 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−u
6
+ 3u
5
+ 3u
4
17u
3
+ 12u
2
+ b + 4u 2, 2u
7
9u
6
+ · · · + a
4, u
8
4u
7
+ · · · + u 1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
9
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
2u
7
+ 9u
6
2u
5
44u
4
+ 70u
3
21u
2
16u + 4
u
6
3u
5
3u
4
+ 17u
3
12u
2
4u + 2
a
11
=
u
u
a
4
=
3u
7
+ 12u
6
+ u
5
61u
4
+ 82u
3
17u
2
18u + 4
u
7
+ 4u
6
20u
4
+ 29u
3
8u
2
6u + 2
a
5
=
2u
7
+ 8u
6
+ u
5
41u
4
+ 53u
3
9u
2
12u + 2
u
7
+ 4u
6
20u
4
+ 29u
3
8u
2
6u + 2
a
7
=
u
6
+ 2u
5
+ 4u
4
11u
3
+ 6u
2
+ 1
u
7
+ u
6
+ 7u
5
8u
4
10u
3
+ 12u
2
+ u 1
a
2
=
u
7
u
6
8u
5
+ 9u
4
+ 15u
3
19u
2
u + 1
3u
7
6u
6
16u
5
+ 37u
4
+ u
3
25u
2
+ 2
a
6
=
3u
7
11u
6
6u
5
+ 58u
4
56u
3
u
2
+ 12u 1
2u
7
8u
6
5u
5
+ 42u
4
35u
3
4u
2
+ 6u 1
a
10
=
u
7
+ 2u
6
+ 5u
5
12u
4
+ u
3
+ 6u
2
+ u
2u
7
+ 4u
6
+ 10u
5
24u
4
+ 2u
3
+ 13u
2
+ u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
7
+ 32u
6
+ 4u
5
163u
4
+ 213u
3
40u
2
51u 4
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
+ 7u
7
+ 35u
6
+ 244u
5
+ 493u
4
+ 885u
3
+ 772u
2
+ 608u + 64
c
2
, c
6
u
8
9u
7
+ 37u
6
88u
5
+ 125u
4
101u
3
+ 34u
2
+ 8u 8
c
3
u
8
+ 2u
7
+ 4u
6
6u
5
+ 10u
4
3u
3
+ 5u
2
u 1
c
4
, c
7
u
8
3u
7
+ 9u
6
2u
5
14u
3
19u
2
8u 1
c
5
, c
9
, c
10
u
8
+ 2u
7
+ 10u
6
+ 51u
5
+ 8u
4
+ 28u
3
+ 10u
2
+ 2u + 1
c
8
, c
11
, c
12
u
8
+ 4u
7
u
6
22u
5
25u
4
+ 4u
3
+ 12u
2
u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
8
+ 21y
7
+ ··· 270848y + 4096
c
2
, c
6
y
8
7y
7
+ 35y
6
244y
5
+ 493y
4
885y
3
+ 772y
2
608y + 64
c
3
y
8
+ 4y
7
+ 60y
6
+ 66y
5
+ 106y
4
+ 71y
3
y
2
11y + 1
c
4
, c
7
y
8
+ 9y
7
+ 69y
6
126y
5
448y
4
246y
3
+ 137y
2
26y + 1
c
5
, c
9
, c
10
y
8
+ 16y
7
88y
6
2533y
5
2598y
4
808y
3
+ 4y
2
+ 16y + 1
c
8
, c
11
, c
12
y
8
18y
7
+ 127y
6
442y
5
+ 783y
4
658y
3
+ 202y
2
25y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.357740 + 0.195354I
a = 0.300439 + 0.153458I
b = 0.766915 + 0.837154I
3.40670 + 1.82723I 16.1033 2.4545I
u = 1.357740 0.195354I
a = 0.300439 0.153458I
b = 0.766915 0.837154I
3.40670 1.82723I 16.1033 + 2.4545I
u = 0.432193 + 0.048912I
a = 0.26933 + 2.64283I
b = 0.144443 + 0.793261I
2.34111 2.75408I 10.98687 + 7.43235I
u = 0.432193 0.048912I
a = 0.26933 2.64283I
b = 0.144443 0.793261I
2.34111 + 2.75408I 10.98687 7.43235I
u = 0.276903
a = 0.812540
b = 0.311154
0.562481 17.6050
u = 2.08809 + 0.20687I
a = 0.80818 + 1.18869I
b = 1.72548 + 2.10674I
3.25293 6.36321I 12.47350 + 2.40837I
u = 2.08809 0.20687I
a = 0.80818 1.18869I
b = 1.72548 2.10674I
3.25293 + 6.36321I 12.47350 2.40837I
u = 2.30418
a = 0.741615
b = 0.517168
18.6166 11.2680
5
II.
I
u
2
= hu
4
+ 2u
3
u
2
+ b u, u
4
+ 3u
3
+ u
2
+ a 2u 1, u
5
+ 3u
4
3u
2
+ u 1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
9
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
4
3u
3
u
2
+ 2u + 1
u
4
2u
3
+ u
2
+ u
a
11
=
u
u
a
4
=
2u
3
3u
2
+ 3u
u
3
u
2
+ 2u 1
a
5
=
u
3
2u
2
+ u + 1
u
3
u
2
+ 2u 1
a
7
=
u
4
+ 2u
3
2u
2
2u + 2
u
3
2u
2
+ 2u
a
2
=
2u
2
3u + 3
u
4
3u
3
+ 2u + 1
a
6
=
u
4
3u
3
+ 4u 1
u
4
+ u
3
u
2
+ u 2
a
10
=
u
4
3u
3
+ 4u
u
2
+ u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
4
3u
3
4u
2
u 8
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
5
7u
4
+ 15u
3
20u
2
+ 9u 1
c
2
u
5
u
4
3u
3
+ 3u 1
c
3
u
5
u
4
3u
3
2u
2
3u 1
c
4
u
5
2u
4
u
3
+ 4u
2
6u + 3
c
5
, c
9
u
5
3u
4
+ u
3
+ u
2
4u + 1
c
6
u
5
+ u
4
3u
3
+ 3u + 1
c
7
u
5
+ 2u
4
u
3
4u
2
6u 3
c
8
u
5
+ 3u
4
3u
2
+ u 1
c
10
u
5
+ 3u
4
+ u
3
u
2
4u 1
c
11
, c
12
u
5
3u
4
+ 3u
2
+ u + 1
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
5
19y
4
37y
3
144y
2
+ 41y 1
c
2
, c
6
y
5
7y
4
+ 15y
3
20y
2
+ 9y 1
c
3
y
5
7y
4
y
3
+ 12y
2
+ 5y 1
c
4
, c
7
y
5
6y
4
+ 5y
3
+ 8y
2
+ 12y 9
c
5
, c
9
, c
10
y
5
7y
4
y
3
3y
2
+ 14y 1
c
8
, c
11
, c
12
y
5
9y
4
+ 20y
3
3y
2
5y 1
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.896190
a = 0.815182
b = 0.385277
2.59633 14.9130
u = 0.116133 + 0.503198I
a = 1.68814 + 1.26672I
b = 0.005908 + 0.890217I
2.78994 + 2.01434I 6.94110 0.59350I
u = 0.116133 0.503198I
a = 1.68814 1.26672I
b = 0.005908 0.890217I
2.78994 2.01434I 6.94110 + 0.59350I
u = 1.78655
a = 1.15452
b = 2.62235
12.8780 12.0610
u = 2.34191
a = 0.715612
b = 1.24889
19.7144 19.1430
9
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
5
7u
4
+ 15u
3
20u
2
+ 9u 1)
· (u
8
+ 7u
7
+ 35u
6
+ 244u
5
+ 493u
4
+ 885u
3
+ 772u
2
+ 608u + 64)
c
2
(u
5
u
4
3u
3
+ 3u 1)
· (u
8
9u
7
+ 37u
6
88u
5
+ 125u
4
101u
3
+ 34u
2
+ 8u 8)
c
3
(u
5
u
4
3u
3
2u
2
3u 1)
· (u
8
+ 2u
7
+ 4u
6
6u
5
+ 10u
4
3u
3
+ 5u
2
u 1)
c
4
(u
5
2u
4
u
3
+ 4u
2
6u + 3)
· (u
8
3u
7
+ 9u
6
2u
5
14u
3
19u
2
8u 1)
c
5
, c
9
(u
5
3u
4
+ u
3
+ u
2
4u + 1)
· (u
8
+ 2u
7
+ 10u
6
+ 51u
5
+ 8u
4
+ 28u
3
+ 10u
2
+ 2u + 1)
c
6
(u
5
+ u
4
3u
3
+ 3u + 1)
· (u
8
9u
7
+ 37u
6
88u
5
+ 125u
4
101u
3
+ 34u
2
+ 8u 8)
c
7
(u
5
+ 2u
4
u
3
4u
2
6u 3)
· (u
8
3u
7
+ 9u
6
2u
5
14u
3
19u
2
8u 1)
c
8
(u
5
+ 3u
4
3u
2
+ u 1)
· (u
8
+ 4u
7
u
6
22u
5
25u
4
+ 4u
3
+ 12u
2
u 1)
c
10
(u
5
+ 3u
4
+ u
3
u
2
4u 1)
· (u
8
+ 2u
7
+ 10u
6
+ 51u
5
+ 8u
4
+ 28u
3
+ 10u
2
+ 2u + 1)
c
11
, c
12
(u
5
3u
4
+ 3u
2
+ u + 1)
· (u
8
+ 4u
7
u
6
22u
5
25u
4
+ 4u
3
+ 12u
2
u 1)
10
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
5
19y
4
37y
3
144y
2
+ 41y 1)
· (y
8
+ 21y
7
+ ··· 270848y + 4096)
c
2
, c
6
(y
5
7y
4
+ 15y
3
20y
2
+ 9y 1)
· (y
8
7y
7
+ 35y
6
244y
5
+ 493y
4
885y
3
+ 772y
2
608y + 64)
c
3
(y
5
7y
4
y
3
+ 12y
2
+ 5y 1)
· (y
8
+ 4y
7
+ 60y
6
+ 66y
5
+ 106y
4
+ 71y
3
y
2
11y + 1)
c
4
, c
7
(y
5
6y
4
+ 5y
3
+ 8y
2
+ 12y 9)
· (y
8
+ 9y
7
+ 69y
6
126y
5
448y
4
246y
3
+ 137y
2
26y + 1)
c
5
, c
9
, c
10
(y
5
7y
4
y
3
3y
2
+ 14y 1)
· (y
8
+ 16y
7
88y
6
2533y
5
2598y
4
808y
3
+ 4y
2
+ 16y + 1)
c
8
, c
11
, c
12
(y
5
9y
4
+ 20y
3
3y
2
5y 1)
· (y
8
18y
7
+ 127y
6
442y
5
+ 783y
4
658y
3
+ 202y
2
25y + 1)
11