12n
0595
(K12n
0595
)
A knot diagram
1
Linearized knot diagam
3 7 10 7 11 2 4 1 12 6 4 9
Solving Sequence
2,7 3,10
4 8 1 6 11 12 5 9
c
2
c
3
c
7
c
1
c
6
c
10
c
11
c
5
c
9
c
4
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h187u
23
+ 2090u
22
+ ··· + 32b + 20128, 629u
23
+ 5916u
22
+ ··· + 64a + 31616,
u
24
+ 10u
23
+ ··· + 544u + 64i
I
u
2
= h−5.02864 × 10
17
a
11
u
2
2.22146 × 10
17
a
10
u
2
+ ··· 9.76070 × 10
17
a 5.75653 × 10
16
,
a
11
u
2
3a
10
u
2
+ ··· + 342a + 270, u
3
u
2
+ 1i
I
u
3
= h−7u
14
+ 17u
13
+ ··· + b 7, 7u
14
+ 14u
13
+ ··· + a 12,
u
15
3u
14
+ 11u
12
11u
11
14u
10
+ 30u
9
+ u
8
35u
7
+ 15u
6
+ 22u
5
15u
4
7u
3
+ 6u
2
+ u 1i
* 3 irreducible components of dim
C
= 0, with total 75 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h187u
23
+ 2090u
22
+ · · · + 32b + 20128, 629u
23
+ 5916u
22
+ · · · +
64a + 31616, u
24
+ 10u
23
+ · · · + 544u + 64i
(i) Arc colorings
a
2
=
1
0
a
7
=
0
u
a
3
=
1
u
2
a
10
=
629
64
u
23
1479
16
u
22
+ ···
15951
4
u 494
187
32
u
23
1045
16
u
22
+ ···
9705
2
u 629
a
4
=
1
8
u
23
+
9
8
u
22
+ ··· +
69
2
u +
9
2
1
8
u
23
+
5
4
u
22
+ ··· +
129
2
u + 8
a
8
=
11
16
u
23
+
29
4
u
22
+ ··· +
1881
4
u + 60
1
8
u
23
+
1
2
u
22
+ ··· + 383u + 52
a
1
=
u
2
+ 1
u
4
a
6
=
u
u
a
11
=
683
64
u
23
+
1455
16
u
22
+ ··· +
10705
4
u + 320
469
32
u
23
+
1889
16
u
22
+ ··· +
3623
2
u + 185
a
12
=
23
16
u
23
+
83
4
u
22
+ ··· + 2552u + 347
191
16
u
23
1531
16
u
22
+ ··· 1486u 148
a
5
=
1
8
u
23
+
9
8
u
22
+ ··· +
69
2
u +
9
2
1
8
u
23
+ u
22
+ ··· + 30u
2
+
9
2
u
a
9
=
35
16
u
23
83
4
u
22
+ ···
3627
4
u 112
3
8
u
23
1
2
u
22
+ ··· 905u 124
(ii) Obstruction class = 1
(iii) Cusp Shapes = 9u
23
+
361
4
u
22
+ ··· + 5492u + 734
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
24
+ 10u
23
+ ··· + 5120u + 4096
c
2
, c
6
u
24
10u
23
+ ··· 544u + 64
c
3
, c
5
, c
10
u
24
+ u
22
+ ··· u + 1
c
4
, c
7
u
24
+ 4u
23
+ ··· + 3u + 1
c
8
, c
9
, c
12
u
24
+ 6u
23
+ ··· + 36u + 8
c
11
u
24
2u
23
+ ··· 253u
2
+ 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
24
+ 10y
23
+ ··· + 246415360y + 16777216
c
2
, c
6
y
24
10y
23
+ ··· 5120y + 4096
c
3
, c
5
, c
10
y
24
+ 2y
23
+ ··· + 3y + 1
c
4
, c
7
y
24
36y
23
+ ··· 43y + 1
c
8
, c
9
, c
12
y
24
+ 20y
23
+ ··· 208y + 64
c
11
y
24
28y
23
+ ··· 8096y + 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.960426 + 0.434752I
a = 1.39464 0.85244I
b = 0.96884 1.42503I
0.39618 + 3.94424I 9.54953 8.49759I
u = 0.960426 0.434752I
a = 1.39464 + 0.85244I
b = 0.96884 + 1.42503I
0.39618 3.94424I 9.54953 + 8.49759I
u = 0.148613 + 0.911725I
a = 0.535233 + 0.029034I
b = 0.053071 0.492300I
3.90744 1.61982I 3.51812 + 4.40153I
u = 0.148613 0.911725I
a = 0.535233 0.029034I
b = 0.053071 + 0.492300I
3.90744 + 1.61982I 3.51812 4.40153I
u = 0.610326 + 0.971717I
a = 0.759390 + 0.695247I
b = 0.212108 + 1.162240I
3.60557 + 0.61915I 6.47955 0.75287I
u = 0.610326 0.971717I
a = 0.759390 0.695247I
b = 0.212108 1.162240I
3.60557 0.61915I 6.47955 + 0.75287I
u = 0.603350 + 1.069910I
a = 0.600113 0.693104I
b = 0.379478 1.060250I
6.67312 4.02157I 8.76645 + 3.55064I
u = 0.603350 1.069910I
a = 0.600113 + 0.693104I
b = 0.379478 + 1.060250I
6.67312 + 4.02157I 8.76645 3.55064I
u = 1.242100 + 0.248561I
a = 0.058554 0.232893I
b = 0.014842 + 0.303830I
2.22462 1.76771I 0.33207 + 2.72222I
u = 1.242100 0.248561I
a = 0.058554 + 0.232893I
b = 0.014842 0.303830I
2.22462 + 1.76771I 0.33207 2.72222I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.598153 + 1.149870I
a = 0.482510 + 0.665162I
b = 0.476234 + 0.952691I
1.93569 8.47324I 4.22747 + 6.00356I
u = 0.598153 1.149870I
a = 0.482510 0.665162I
b = 0.476234 0.952691I
1.93569 + 8.47324I 4.22747 6.00356I
u = 1.125790 + 0.732879I
a = 1.287760 0.541469I
b = 1.05292 1.55335I
1.96046 + 5.63124I 4.21368 3.68677I
u = 1.125790 0.732879I
a = 1.287760 + 0.541469I
b = 1.05292 + 1.55335I
1.96046 5.63124I 4.21368 + 3.68677I
u = 1.274940 + 0.470739I
a = 0.919966 + 0.816206I
b = 0.78868 + 1.47368I
8.06206 + 6.43186I 0.98186 9.91203I
u = 1.274940 0.470739I
a = 0.919966 0.816206I
b = 0.78868 1.47368I
8.06206 6.43186I 0.98186 + 9.91203I
u = 1.155680 + 0.779068I
a = 1.296620 + 0.435684I
b = 1.15905 + 1.51367I
4.90945 + 10.68360I 6.29274 6.83109I
u = 1.155680 0.779068I
a = 1.296620 0.435684I
b = 1.15905 1.51367I
4.90945 10.68360I 6.29274 + 6.83109I
u = 0.444487 + 0.406708I
a = 1.387950 + 0.186641I
b = 0.541015 + 0.647447I
1.007530 0.240613I 10.53326 + 2.62206I
u = 0.444487 0.406708I
a = 1.387950 0.186641I
b = 0.541015 0.647447I
1.007530 + 0.240613I 10.53326 2.62206I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.18147 + 0.80593I
a = 1.276470 0.354607I
b = 1.22233 1.44770I
0.0595 + 15.4273I 2.28436 8.54538I
u = 1.18147 0.80593I
a = 1.276470 + 0.354607I
b = 1.22233 + 1.44770I
0.0595 15.4273I 2.28436 + 8.54538I
u = 1.56391 + 0.41904I
a = 0.060771 + 0.164825I
b = 0.025972 0.283237I
8.02840 4.65058I 5.55122 + 0.I
u = 1.56391 0.41904I
a = 0.060771 0.164825I
b = 0.025972 + 0.283237I
8.02840 + 4.65058I 5.55122 + 0.I
7
II. I
u
2
= h−5.03 × 10
17
a
11
u
2
2.22 × 10
17
a
10
u
2
+ · · · 9.76 × 10
17
a 5.76 ×
10
16
, a
11
u
2
3a
10
u
2
+ · · · + 342a + 270, u
3
u
2
+ 1i
(i) Arc colorings
a
2
=
1
0
a
7
=
0
u
a
3
=
1
u
2
a
10
=
a
0.760828a
11
u
2
+ 0.336105a
10
u
2
+ ··· + 1.47678a + 0.0870957
a
4
=
0.161224a
11
u
2
0.231777a
10
u
2
+ ··· 0.574135a 1.02670
0.322449a
11
u
2
0.463555a
10
u
2
+ ··· 1.14827a 2.05340
a
8
=
1.11863a
11
u
2
2.00948a
10
u
2
+ ··· 0.0799198a + 0.987036
2.18025a
11
u
2
2.66485a
10
u
2
+ ··· 0.269690a + 3.10319
a
1
=
u
2
+ 1
u
2
+ u + 1
a
6
=
u
u
a
11
=
0.751052a
11
u
2
+ 0.532088a
10
u
2
+ ··· 2.09089a 0.395085
1.51188a
11
u
2
+ 0.868193a
10
u
2
+ ··· 1.61411a 0.307989
a
12
=
2.43820a
11
u
2
+ 2.31550a
10
u
2
+ ··· 7.45269a 0.483830
0.942804a
11
u
2
+ 1.01259a
10
u
2
+ ··· 11.3778a 3.58923
a
5
=
0.161224a
11
u
2
0.231777a
10
u
2
+ ··· 0.574135a 1.02670
0.610760a
11
u
2
+ 0.660458a
10
u
2
+ ··· 1.46841a 1.69087
a
9
=
0.587461a
11
u
2
1.49312a
10
u
2
+ ··· + 0.224321a 1.59341
1.64875a
11
u
2
4.32440a
10
u
2
+ ··· + 1.17215a + 1.29332
(ii) Obstruction class = 1
(iii) Cusp Shapes =
472821250888279224
660943353461191351
a
11
u
2
2769977983618152264
660943353461191351
a
10
u
2
+ ··· +
15612584538467295228
660943353461191351
a +
630168688688268602
660943353461191351
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
3
+ u
2
+ 2u + 1)
12
c
2
, c
6
(u
3
+ u
2
1)
12
c
3
, c
5
, c
10
u
36
+ u
35
+ ··· 24u 1
c
4
, c
7
u
36
+ 5u
35
+ ··· 25616u 8257
c
8
, c
9
, c
12
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)
6
c
11
u
36
u
35
+ ··· 194210u 32651
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
3
+ 3y
2
+ 2y 1)
12
c
2
, c
6
(y
3
y
2
+ 2y 1)
12
c
3
, c
5
, c
10
y
36
+ 15y
35
+ ··· 424y + 1
c
4
, c
7
y
36
9y
35
+ ··· + 88932224y + 68178049
c
8
, c
9
, c
12
(y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1)
6
c
11
y
36
+ 3y
35
+ ··· 12157276468y + 1066087801
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.966871 + 0.180936I
b = 0.819834 0.289466I
1.17182 2.82812I 8.92653 + 2.97945I
u = 0.877439 + 0.744862I
a = 0.906735 + 0.163934I
b = 1.40770 0.61461I
4.87092 4.80053I 0.08548 + 6.66423I
u = 0.877439 + 0.744862I
a = 0.596231 + 0.691478I
b = 0.881257 0.308926I
4.87092 0.85571I 0.085479 0.705331I
u = 0.877439 + 0.744862I
a = 0.693529 + 0.478182I
b = 0.85756 + 1.73624I
1.78490 7.42025I 4.09089 + 6.18427I
u = 0.877439 + 0.744862I
a = 0.757411 0.290893I
b = 1.038210 0.162620I
4.87092 0.85571I 0.085479 0.705331I
u = 0.877439 + 0.744862I
a = 0.570573 0.528271I
b = 0.62680 1.75390I
5.74941 2.82812I 7.77925 + 2.97945I
u = 0.877439 + 0.744862I
a = 0.705785 0.269246I
b = 0.983142 + 0.561425I
1.17182 2.82812I 8.92653 + 2.97945I
u = 0.877439 + 0.744862I
a = 0.431400 + 0.557577I
b = 0.38501 + 1.72079I
1.78490 + 1.76400I 4.09089 0.22537I
u = 0.877439 + 0.744862I
a = 1.277990 0.384427I
b = 0.917712 + 0.531550I
4.87092 4.80053I 0.08548 + 6.66423I
u = 0.877439 + 0.744862I
a = 1.22258 0.92330I
b = 0.036791 0.810574I
1.78490 + 1.76400I 4.09089 0.22537I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 1.40135 + 0.80927I
b = 0.107154 + 0.888524I
5.74941 2.82812I 7.77925 + 2.97945I
u = 0.877439 + 0.744862I
a = 1.54427 0.66783I
b = 0.252349 0.936159I
1.78490 7.42025I 4.09089 + 6.18427I
u = 0.877439 0.744862I
a = 0.966871 0.180936I
b = 0.819834 + 0.289466I
1.17182 + 2.82812I 8.92653 2.97945I
u = 0.877439 0.744862I
a = 0.906735 0.163934I
b = 1.40770 + 0.61461I
4.87092 + 4.80053I 0.08548 6.66423I
u = 0.877439 0.744862I
a = 0.596231 0.691478I
b = 0.881257 + 0.308926I
4.87092 + 0.85571I 0.085479 + 0.705331I
u = 0.877439 0.744862I
a = 0.693529 0.478182I
b = 0.85756 1.73624I
1.78490 + 7.42025I 4.09089 6.18427I
u = 0.877439 0.744862I
a = 0.757411 + 0.290893I
b = 1.038210 + 0.162620I
4.87092 + 0.85571I 0.085479 + 0.705331I
u = 0.877439 0.744862I
a = 0.570573 + 0.528271I
b = 0.62680 + 1.75390I
5.74941 + 2.82812I 7.77925 2.97945I
u = 0.877439 0.744862I
a = 0.705785 + 0.269246I
b = 0.983142 0.561425I
1.17182 + 2.82812I 8.92653 2.97945I
u = 0.877439 0.744862I
a = 0.431400 0.557577I
b = 0.38501 1.72079I
1.78490 1.76400I 4.09089 + 0.22537I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 0.744862I
a = 1.277990 + 0.384427I
b = 0.917712 0.531550I
4.87092 + 4.80053I 0.08548 6.66423I
u = 0.877439 0.744862I
a = 1.22258 + 0.92330I
b = 0.036791 + 0.810574I
1.78490 1.76400I 4.09089 + 0.22537I
u = 0.877439 0.744862I
a = 1.40135 0.80927I
b = 0.107154 0.888524I
5.74941 + 2.82812I 7.77925 2.97945I
u = 0.877439 0.744862I
a = 1.54427 + 0.66783I
b = 0.252349 + 0.936159I
1.78490 + 7.42025I 4.09089 6.18427I
u = 0.754878
a = 0.744757 + 1.086550I
b = 0.562201 0.820211I
5.30941 2.39727 + 0.I
u = 0.754878
a = 0.744757 1.086550I
b = 0.562201 + 0.820211I
5.30941 2.39727 + 0.I
u = 0.754878
a = 0.611696 + 0.297636I
b = 0.68475 1.56206I
9.00850 + 1.97241I 6.44379 3.68478I
u = 0.754878
a = 0.611696 0.297636I
b = 0.68475 + 1.56206I
9.00850 1.97241I 6.44379 + 3.68478I
u = 0.754878
a = 1.89410 + 0.09019I
b = 2.10577 0.44724I
2.35268 4.59213I 2.43837 + 3.20482I
u = 0.754878
a = 1.89410 0.09019I
b = 2.10577 + 0.44724I
2.35268 + 4.59213I 2.43837 3.20482I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.754878
a = 2.00292
b = 2.06588
1.61183 1.25000
u = 0.754878
a = 0.90710 + 2.06929I
b = 0.461755 0.224679I
9.00850 1.97241I 6.44379 + 3.68478I
u = 0.754878
a = 0.90710 2.06929I
b = 0.461755 + 0.224679I
9.00850 + 1.97241I 6.44379 3.68478I
u = 0.754878
a = 2.73671
b = 1.51196
1.61183 1.25000
u = 0.754878
a = 2.78955 + 0.59246I
b = 1.42981 0.06809I
2.35268 + 4.59213I 2.43837 3.20482I
u = 0.754878
a = 2.78955 0.59246I
b = 1.42981 + 0.06809I
2.35268 4.59213I 2.43837 + 3.20482I
14
III. I
u
3
=
h−7u
14
+17u
13
+· · ·+b7, 7u
14
+14u
13
+· · ·+a12, u
15
3u
14
+· · ·+u1i
(i) Arc colorings
a
2
=
1
0
a
7
=
0
u
a
3
=
1
u
2
a
10
=
7u
14
14u
13
+ ··· 3u + 12
7u
14
17u
13
+ ··· + 5u + 7
a
4
=
u
14
+ 2u
13
+ ··· + u 6
u
14
+ 3u
13
+ ··· 6u 1
a
8
=
5u
14
14u
13
+ ··· + 9u + 4
u
14
2u
13
+ ··· u + 6
a
1
=
u
2
+ 1
u
4
a
6
=
u
u
a
11
=
6u
14
12u
13
+ ··· 55u
2
+ 9
6u
14
15u
13
+ ··· + 8u + 4
a
12
=
8u
14
19u
13
+ ··· 55u
2
+ 10
4u
14
8u
13
+ ··· + 2u + 8
a
5
=
u
14
+ 2u
13
+ ··· + u 6
u
14
+ 3u
13
+ ··· + 7u
2
6u
a
9
=
6u
14
16u
13
+ ··· + 9u + 8
u
14
2u
13
+ ··· u + 6
(ii) Obstruction class = 1
(iii) Cusp Shapes = 14u
14
33u
13
15u
12
+ 125u
11
66u
10
188u
9
+ 232u
8
+
128u
7
277u
6
7u
5
+ 206u
4
8u
3
60u
2
+ 9u + 15
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
15
9u
14
+ ··· + 13u 1
c
2
u
15
3u
14
+ ··· + u 1
c
3
, c
10
u
15
+ 7u
13
+ ··· 3u
2
1
c
4
u
15
2u
14
+ ··· + 4u
2
+ 1
c
5
u
15
+ 7u
13
+ ··· + 3u
2
+ 1
c
6
u
15
+ 3u
14
+ ··· + u + 1
c
7
u
15
+ 2u
14
+ ··· 4u
2
1
c
8
, c
9
u
15
+ u
14
+ ··· + 2u + 1
c
11
u
15
+ 11u
12
+ ··· + 20u + 52
c
12
u
15
u
14
+ ··· + 2u 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
15
+ 7y
14
+ ··· + 9y 1
c
2
, c
6
y
15
9y
14
+ ··· + 13y 1
c
3
, c
5
, c
10
y
15
+ 14y
14
+ ··· 6y 1
c
4
, c
7
y
15
+ 8y
14
+ ··· 8y 1
c
8
, c
9
, c
12
y
15
+ 15y
14
+ ··· + 2y 1
c
11
y
15
+ 22y
13
+ ··· 9480y 2704
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.903593 + 0.241265I
a = 0.350344 0.717165I
b = 0.143541 + 0.732551I
5.33721 + 1.06098I 1.94514 6.50174I
u = 0.903593 0.241265I
a = 0.350344 + 0.717165I
b = 0.143541 0.732551I
5.33721 1.06098I 1.94514 + 6.50174I
u = 1.153700 + 0.341454I
a = 0.250605 + 0.447767I
b = 0.136231 0.602157I
10.48360 + 4.01988I 3.70487 3.71278I
u = 1.153700 0.341454I
a = 0.250605 0.447767I
b = 0.136231 + 0.602157I
10.48360 4.01988I 3.70487 + 3.71278I
u = 1.019660 + 0.734646I
a = 0.820127 + 0.113685I
b = 0.919765 0.486583I
1.92987 3.17848I 2.15467 + 7.79131I
u = 1.019660 0.734646I
a = 0.820127 0.113685I
b = 0.919765 + 0.486583I
1.92987 + 3.17848I 2.15467 7.79131I
u = 0.761388 + 1.022410I
a = 0.507420 0.449806I
b = 0.846228 + 0.176312I
5.29563 2.03853I 2.96527 + 5.97997I
u = 0.761388 1.022410I
a = 0.507420 + 0.449806I
b = 0.846228 0.176312I
5.29563 + 2.03853I 2.96527 5.97997I
u = 0.686174
a = 3.14054
b = 2.15496
2.14254 20.3790
u = 0.626156 + 0.247109I
a = 2.60546 + 0.72610I
b = 1.81085 0.18918I
1.59061 4.99019I 7.82612 + 8.92217I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.626156 0.247109I
a = 2.60546 0.72610I
b = 1.81085 + 0.18918I
1.59061 + 4.99019I 7.82612 8.92217I
u = 0.608443 + 0.200961I
a = 0.78816 + 1.31289I
b = 0.215712 0.957209I
8.24398 1.54403I 3.81810 1.58037I
u = 0.608443 0.200961I
a = 0.78816 1.31289I
b = 0.215712 + 0.957209I
8.24398 + 1.54403I 3.81810 + 1.58037I
u = 1.41545 + 0.63783I
a = 0.536325 + 0.251841I
b = 0.598509 + 0.698551I
7.66882 5.24684I 0.04579 + 7.53706I
u = 1.41545 0.63783I
a = 0.536325 0.251841I
b = 0.598509 0.698551I
7.66882 + 5.24684I 0.04579 7.53706I
19
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
3
+ u
2
+ 2u + 1)
12
)(u
15
9u
14
+ ··· + 13u 1)
· (u
24
+ 10u
23
+ ··· + 5120u + 4096)
c
2
((u
3
+ u
2
1)
12
)(u
15
3u
14
+ ··· + u 1)(u
24
10u
23
+ ··· 544u + 64)
c
3
, c
10
(u
15
+ 7u
13
+ ··· 3u
2
1)(u
24
+ u
22
+ ··· u + 1)
· (u
36
+ u
35
+ ··· 24u 1)
c
4
(u
15
2u
14
+ ··· + 4u
2
+ 1)(u
24
+ 4u
23
+ ··· + 3u + 1)
· (u
36
+ 5u
35
+ ··· 25616u 8257)
c
5
(u
15
+ 7u
13
+ ··· + 3u
2
+ 1)(u
24
+ u
22
+ ··· u + 1)
· (u
36
+ u
35
+ ··· 24u 1)
c
6
((u
3
+ u
2
1)
12
)(u
15
+ 3u
14
+ ··· + u + 1)(u
24
10u
23
+ ··· 544u + 64)
c
7
(u
15
+ 2u
14
+ ··· 4u
2
1)(u
24
+ 4u
23
+ ··· + 3u + 1)
· (u
36
+ 5u
35
+ ··· 25616u 8257)
c
8
, c
9
((u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)
6
)(u
15
+ u
14
+ ··· + 2u + 1)
· (u
24
+ 6u
23
+ ··· + 36u + 8)
c
11
(u
15
+ 11u
12
+ ··· + 20u + 52)(u
24
2u
23
+ ··· 253u
2
+ 16)
· (u
36
u
35
+ ··· 194210u 32651)
c
12
((u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)
6
)(u
15
u
14
+ ··· + 2u 1)
· (u
24
+ 6u
23
+ ··· + 36u + 8)
20
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
3
+ 3y
2
+ 2y 1)
12
)(y
15
+ 7y
14
+ ··· + 9y 1)
· (y
24
+ 10y
23
+ ··· + 246415360y + 16777216)
c
2
, c
6
((y
3
y
2
+ 2y 1)
12
)(y
15
9y
14
+ ··· + 13y 1)
· (y
24
10y
23
+ ··· 5120y + 4096)
c
3
, c
5
, c
10
(y
15
+ 14y
14
+ ··· 6y 1)(y
24
+ 2y
23
+ ··· + 3y + 1)
· (y
36
+ 15y
35
+ ··· 424y + 1)
c
4
, c
7
(y
15
+ 8y
14
+ ··· 8y 1)(y
24
36y
23
+ ··· 43y + 1)
· (y
36
9y
35
+ ··· + 88932224y + 68178049)
c
8
, c
9
, c
12
((y
6
+ 5y
5
+ ··· 5y + 1)
6
)(y
15
+ 15y
14
+ ··· + 2y 1)
· (y
24
+ 20y
23
+ ··· 208y + 64)
c
11
(y
15
+ 22y
13
+ ··· 9480y 2704)(y
24
28y
23
+ ··· 8096y + 256)
· (y
36
+ 3y
35
+ ··· 12157276468y + 1066087801)
21