12n
0600
(K12n
0600
)
A knot diagram
1
Linearized knot diagam
3 7 9 11 10 2 12 4 3 5 7 8
Solving Sequence
4,8 9,12
1 3 10 7 2 6 11 5
c
8
c
12
c
3
c
9
c
7
c
2
c
6
c
11
c
4
c
1
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
7
u
6
+ 5u
5
8u
4
+ 12u
3
15u
2
+ 8b + 16u 6, u
6
+ 3u
4
u
3
+ u
2
+ 4a 4u 2,
u
8
+ 4u
6
3u
5
+ 4u
4
11u
3
+ u
2
6u + 2i
I
u
2
= h−u
2
a u
3
+ b a u 1, 2u
3
a 2u
2
a u
3
+ 2a
2
+ 2au + u
2
+ 2a 1, u
4
+ u
2
+ u + 1i
I
u
3
= h−211u
9
520u
8
1473u
7
2621u
6
4433u
5
6682u
4
6460u
3
6461u
2
+ 893b 3449u 911,
3011u
9
6938u
8
+ ··· + 8930a 4451,
u
10
+ 3u
9
+ 8u
8
+ 16u
7
+ 27u
6
+ 43u
5
+ 49u
4
+ 48u
3
+ 38u
2
+ 16u + 5i
I
u
4
= h−u
5
+ u
4
u
2
a 2u
3
+ 2u
2
+ b a 2u + 2, 2u
5
a + 2u
3
a + u
4
2u
2
a u
3
+ a
2
+ au + u
2
2a 2u + 2,
u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1i
I
u
5
= hb 1, 6a u 3, u
2
+ 3i
I
u
6
= hb + u, 2a u + 1, u
2
+ 1i
I
v
1
= ha, b 1, v + 1i
* 7 irreducible components of dim
C
= 0, with total 43 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
7
u
6
+ · · · + 8b 6, u
6
+ 3u
4
u
3
+ u
2
+ 4a 4u 2, u
8
+ 4u
6
3u
5
+ 4u
4
11u
3
+ u
2
6u + 2i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
12
=
1
4
u
6
3
4
u
4
+ ··· + u +
1
2
1
8
u
7
+
1
8
u
6
+ ··· 2u +
3
4
a
1
=
1
8
u
7
3
8
u
6
+ ··· + 3u
1
4
1
8
u
7
+
1
8
u
6
+ ··· 2u +
3
4
a
3
=
u
u
3
+ u
a
10
=
u
2
+ 1
u
4
+ 2u
2
a
7
=
1
4
u
6
3
4
u
4
+ ··· + u +
1
2
3
8
u
7
+
1
8
u
6
+ ··· 2u +
3
4
a
2
=
1
4
u
6
+
3
4
u
4
+ ··· +
1
4
u
2
+
1
2
3
8
u
7
+
3
8
u
6
+ ··· u +
1
4
a
6
=
u
3
+ 2u
1
2
u
7
+
1
2
u
6
+ ··· 3u + 1
a
11
=
1
1
2
u
7
+
1
2
u
6
+ ··· 4u + 1
a
5
=
u
1
2
u
7
1
2
u
6
+ ··· + 3u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1
2
u
7
+
1
2
u
6
+
5
2
u
5
+ u
4
+ u
3
9
2
u
2
10u 17
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
+ 5u
7
+ 4u
6
21u
5
39u
4
+ 31u
3
+ 86u
2
+ 57u + 4
c
2
, c
6
, c
7
c
11
, c
12
u
8
3u
7
+ 2u
6
+ u
5
3u
4
+ 5u
3
+ 2u
2
7u 2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
8
+ 4u
6
+ 3u
5
+ 4u
4
+ 11u
3
+ u
2
+ 6u + 2
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
8
17y
7
+ ··· 2561y + 16
c
2
, c
6
, c
7
c
11
, c
12
y
8
5y
7
+ 4y
6
+ 21y
5
39y
4
31y
3
+ 86y
2
57y + 4
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
8
+ 8y
7
+ 24y
6
+ 25y
5
38y
4
133y
3
115y
2
32y + 4
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.220679 + 0.854461I
a = 0.332670 + 0.556447I
b = 0.208499 1.323920I
4.23170 + 1.04444I 12.01624 6.62288I
u = 0.220679 0.854461I
a = 0.332670 0.556447I
b = 0.208499 + 1.323920I
4.23170 1.04444I 12.01624 + 6.62288I
u = 1.30710
a = 1.49781
b = 1.66764
14.6274 17.3150
u = 0.66283 + 1.38843I
a = 0.983264 0.973100I
b = 1.51379 + 0.50848I
6.1134 + 13.7627I 12.22207 6.91669I
u = 0.66283 1.38843I
a = 0.983264 + 0.973100I
b = 1.51379 0.50848I
6.1134 13.7627I 12.22207 + 6.91669I
u = 0.07864 + 1.65422I
a = 0.509409 + 0.080495I
b = 0.915236 0.302637I
10.25980 + 1.08243I 6.90626 6.60767I
u = 0.07864 1.65422I
a = 0.509409 0.080495I
b = 0.915236 + 0.302637I
10.25980 1.08243I 6.90626 + 6.60767I
u = 0.302631
a = 0.780180
b = 0.281755
0.483877 20.3950
5
II. I
u
2
= h−u
2
a u
3
+ b a u 1, 2u
3
a 2u
2
a u
3
+ 2a
2
+ 2au + u
2
+
2a 1, u
4
+ u
2
+ u + 1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
12
=
a
u
2
a + u
3
+ a + u + 1
a
1
=
u
2
a u
3
u 1
u
2
a + u
3
+ a + u + 1
a
3
=
u
u
3
+ u
a
10
=
u
2
+ 1
u
2
u 1
a
7
=
a
u
3
a + u
2
a u
3
u 1
a
2
=
u
3
a + au + a + u 1
u
3
a + u
2
a + 3u
3
au u
2
+ a + 2u + 1
a
6
=
u
3
+ 2u
3u
3
+ 1
a
11
=
1
u
3
+ 2u
2
+ 1
a
5
=
u
2u
3
u
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
+ 4u
2
14
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
+ 7u
7
+ 19u
6
+ 11u
5
48u
4
98u
3
+ u
2
+ 170u + 169
c
2
, c
6
, c
7
c
11
, c
12
u
8
3u
7
+ u
6
+ 3u
5
u
2
12u + 13
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(u
4
+ u
2
u + 1)
2
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
8
11y
7
+ ··· 28562y + 28561
c
2
, c
6
, c
7
c
11
, c
12
y
8
7y
7
+ 19y
6
11y
5
48y
4
+ 98y
3
+ y
2
170y + 169
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y
4
+ 2y
3
+ 3y
2
+ y + 1)
2
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.547424 + 0.585652I
a = 0.429852 0.104809I
b = 1.195840 + 0.535402I
4.26996 + 1.39709I 15.7702 3.8674I
u = 0.547424 + 0.585652I
a = 1.32498 1.44768I
b = 1.344030 + 0.375890I
4.26996 + 1.39709I 15.7702 3.8674I
u = 0.547424 0.585652I
a = 0.429852 + 0.104809I
b = 1.195840 0.535402I
4.26996 1.39709I 15.7702 + 3.8674I
u = 0.547424 0.585652I
a = 1.32498 + 1.44768I
b = 1.344030 0.375890I
4.26996 1.39709I 15.7702 + 3.8674I
u = 0.547424 + 1.120870I
a = 1.018240 + 0.928993I
b = 1.53596 0.48899I
0.66484 7.64338I 10.22981 + 6.51087I
u = 0.547424 + 1.120870I
a = 0.413361 0.422149I
b = 0.184153 + 1.209330I
0.66484 7.64338I 10.22981 + 6.51087I
u = 0.547424 1.120870I
a = 1.018240 0.928993I
b = 1.53596 + 0.48899I
0.66484 + 7.64338I 10.22981 6.51087I
u = 0.547424 1.120870I
a = 0.413361 + 0.422149I
b = 0.184153 1.209330I
0.66484 + 7.64338I 10.22981 6.51087I
9
III. I
u
3
= h−211u
9
520u
8
+ · · · + 893b 911, 3011u
9
6938u
8
+ · · · +
8930a 4451, u
10
+ 3u
9
+ · · · + 16u + 5i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
12
=
0.337178u
9
+ 0.776932u
8
+ ··· + 5.47738u + 0.498432
0.236282u
9
+ 0.582307u
8
+ ··· + 3.86226u + 1.02016
a
1
=
0.100896u
9
+ 0.194625u
8
+ ··· + 1.61512u 0.521725
0.236282u
9
+ 0.582307u
8
+ ··· + 3.86226u + 1.02016
a
3
=
u
u
3
+ u
a
10
=
u
2
+ 1
u
4
+ 2u
2
a
7
=
0.0959686u
9
0.0241881u
8
+ ··· + 1.61803u + 1.10224
0.265398u
9
0.407615u
8
+ ··· 1.60358u 0.814110
a
2
=
0.287682u
9
0.473908u
8
+ ··· 1.81713u 1.84871
0.627100u
9
1.23740u
8
+ ··· 5.58231u 2.79283
a
6
=
0.717357u
9
+ 1.49586u
8
+ ··· + 12.0804u + 5.15409
1.26876u
9
+ 2.38746u
8
+ ··· + 13.5353u + 5.48264
a
11
=
0.0494961u
9
+ 0.303024u
8
+ ··· + 2.66025u 1.35028
0.390817u
9
0.655095u
8
+ ··· 2.72004u 1.77268
a
5
=
0.0454647u
9
0.527212u
8
+ ··· 8.74222u 3.44748
0.671892u
9
+ 0.968645u
8
+ ··· + 5.33819u + 1.70661
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
714
893
u
9
2860
893
u
8
6762
893
u
7
14862
893
u
6
23042
893
u
5
37644
893
u
4
2246
47
u
3
35982
893
u
2
26560
893
u
15280
893
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
5
+ 7u
4
+ 17u
3
+ 14u
2
+ 1)
2
c
2
, c
6
, c
7
c
11
, c
12
(u
5
+ u
4
3u
3
2u
2
+ 2u 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
10
3u
9
+ ··· 16u + 5
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
5
15y
4
+ 93y
3
210y
2
28y 1)
2
c
2
, c
6
, c
7
c
11
, c
12
(y
5
7y
4
+ 17y
3
14y
2
1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
10
+ 7y
9
+ ··· + 124y + 25
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.030539 + 1.180900I
a = 0.203705 + 0.519644I
b = 0.331409 0.386277I
2.91669 1.13882I 8.71808 + 6.05450I
u = 0.030539 1.180900I
a = 0.203705 0.519644I
b = 0.331409 + 0.386277I
2.91669 + 1.13882I 8.71808 6.05450I
u = 1.280020 + 0.074043I
a = 1.49558 + 0.07831I
b = 1.58033 + 0.28256I
10.17380 6.99719I 15.1390 + 3.5468I
u = 1.280020 0.074043I
a = 1.49558 0.07831I
b = 1.58033 0.28256I
10.17380 + 6.99719I 15.1390 3.5468I
u = 0.255771 + 0.477985I
a = 1.33342 + 0.89783I
b = 0.331409 + 0.386277I
2.91669 + 1.13882I 8.71808 6.05450I
u = 0.255771 0.477985I
a = 1.33342 0.89783I
b = 0.331409 0.386277I
2.91669 1.13882I 8.71808 + 6.05450I
u = 0.68764 + 1.45529I
a = 0.803516 0.827954I
b = 1.58033 + 0.28256I
10.17380 6.99719I 15.1390 + 3.5468I
u = 0.68764 1.45529I
a = 0.803516 + 0.827954I
b = 1.58033 0.28256I
10.17380 + 6.99719I 15.1390 3.5468I
u = 0.68239 + 1.54821I
a = 0.661966 0.593569I
b = 1.49784
5.22495 14.2858 + 0.I
u = 0.68239 1.54821I
a = 0.661966 + 0.593569I
b = 1.49784
5.22495 14.2858 + 0.I
13
IV. I
u
4
= h−u
5
+ u
4
u
2
a 2u
3
+ 2u
2
+ b a 2u + 2, 2u
5
a + u
4
+ · · ·
2a + 2, u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
12
=
a
u
5
u
4
+ u
2
a + 2u
3
2u
2
+ a + 2u 2
a
1
=
u
5
+ u
4
u
2
a 2u
3
+ 2u
2
2u + 2
u
5
u
4
+ u
2
a + 2u
3
2u
2
+ a + 2u 2
a
3
=
u
u
3
+ u
a
10
=
u
2
+ 1
u
4
+ 2u
2
a
7
=
u
5
a u
4
a + u
3
a 2u
2
a u
3
+ au + u
2
2a + 2
u
5
a + u
5
2u
3
a + 2u
3
au + 2u 1
a
2
=
u
5
a u
5
2u
3
a + u
4
u
3
2au + 2u
2
+ a + 2
2u
5
a + 2u
5
+ ··· + 3a 2
a
6
=
2u
5
2u
4
+ 3u
3
3u
2
+ 2u 3
u
5
3u
3
+ u
2
3u
a
11
=
u
5
+ 2u
3
+ u 1
u
5
+ u
3
u
2
+ u 2
a
5
=
u
4
+ u
2
+ 1
2u
5
u
4
+ 4u
3
2u
2
+ 4u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
4u 10
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
6
+ 5u
5
+ 8u
4
+ 6u
3
+ 8u
2
+ 8u + 1)
2
c
2
, c
6
, c
7
c
11
, c
12
(u
6
+ u
5
2u
4
+ 2u
2
2u 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
2
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
6
9y
5
+ 20y
4
+ 14y
3
16y
2
48y + 1)
2
c
2
, c
6
, c
7
c
11
, c
12
(y
6
5y
5
+ 8y
4
6y
3
+ 8y
2
8y + 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
2
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.498832 + 1.001300I
a = 0.275405 0.924742I
b = 0.592989 + 0.847544I
3.02413 + 2.82812I 13.50976 2.97945I
u = 0.498832 + 1.001300I
a = 1.101290 + 0.801486I
b = 1.47043 0.10268I
3.02413 + 2.82812I 13.50976 2.97945I
u = 0.498832 1.001300I
a = 0.275405 + 0.924742I
b = 0.592989 0.847544I
3.02413 2.82812I 13.50976 + 2.97945I
u = 0.498832 1.001300I
a = 1.101290 0.801486I
b = 1.47043 + 0.10268I
3.02413 2.82812I 13.50976 + 2.97945I
u = 0.284920 + 1.115140I
a = 1.46787 0.56029I
b = 0.379278
1.11345 6.98049 + 0.I
u = 0.284920 + 1.115140I
a = 0.89664 + 1.67543I
b = 1.13416
1.11345 6.98049 + 0.I
u = 0.284920 1.115140I
a = 1.46787 + 0.56029I
b = 0.379278
1.11345 6.98049 + 0.I
u = 0.284920 1.115140I
a = 0.89664 1.67543I
b = 1.13416
1.11345 6.98049 + 0.I
u = 0.713912 + 0.305839I
a = 0.448508 + 0.102156I
b = 0.592989 + 0.847544I
3.02413 + 2.82812I 13.50976 2.97945I
u = 0.713912 + 0.305839I
a = 1.59012 0.92088I
b = 1.47043 0.10268I
3.02413 + 2.82812I 13.50976 2.97945I
17
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.713912 0.305839I
a = 0.448508 0.102156I
b = 0.592989 0.847544I
3.02413 2.82812I 13.50976 + 2.97945I
u = 0.713912 0.305839I
a = 1.59012 + 0.92088I
b = 1.47043 + 0.10268I
3.02413 2.82812I 13.50976 + 2.97945I
18
V. I
u
5
= hb 1, 6a u 3, u
2
+ 3i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
3
a
12
=
1
6
u +
1
2
1
a
1
=
1
6
u
1
2
1
a
3
=
u
2u
a
10
=
2
3
a
7
=
1
6
u +
1
2
1
a
2
=
7
6
u
1
2
2u + 1
a
6
=
u
2u
a
11
=
1
0
a
5
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
(u 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
2
+ 3
c
6
, c
11
, c
12
(u + 1)
2
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
(y 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y + 3)
2
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.73205I
a = 0.500000 + 0.288675I
b = 1.00000
9.86960 12.0000
u = 1.73205I
a = 0.500000 0.288675I
b = 1.00000
9.86960 12.0000
22
VI. I
u
6
= hb + u, 2a u + 1, u
2
+ 1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
1
a
12
=
1
2
u
1
2
u
a
1
=
3
2
u
1
2
u
a
3
=
u
0
a
10
=
0
1
a
7
=
1
2
u +
1
2
1
a
2
=
1
2
u
1
2
u
a
6
=
u
2
a
11
=
1
2u
a
5
=
u
u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u + 1)
2
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
c
11
, c
12
u
2
+ 1
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y 1)
2
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
c
11
, c
12
(y + 1)
2
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.500000 + 0.500000I
b = 1.000000I
4.93480 4.00000
u = 1.000000I
a = 0.500000 0.500000I
b = 1.000000I
4.93480 4.00000
26
VII. I
v
1
= ha, b 1, v + 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
1
0
a
9
=
1
0
a
12
=
0
1
a
1
=
1
1
a
3
=
1
0
a
10
=
1
0
a
7
=
1
1
a
2
=
2
1
a
6
=
1
0
a
11
=
1
0
a
5
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
27
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
u 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
c
6
, c
11
, c
12
u + 1
28
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
y 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
29
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
30
VIII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
3
(u + 1)
2
(u
5
+ 7u
4
+ 17u
3
+ 14u
2
+ 1)
2
· (u
6
+ 5u
5
+ 8u
4
+ 6u
3
+ 8u
2
+ 8u + 1)
2
· (u
8
+ 5u
7
+ 4u
6
21u
5
39u
4
+ 31u
3
+ 86u
2
+ 57u + 4)
· (u
8
+ 7u
7
+ 19u
6
+ 11u
5
48u
4
98u
3
+ u
2
+ 170u + 169)
c
2
, c
7
(u 1)
3
(u
2
+ 1)(u
5
+ u
4
3u
3
2u
2
+ 2u 1)
2
· ((u
6
+ u
5
2u
4
+ 2u
2
2u 1)
2
)(u
8
3u
7
+ ··· 12u + 13)
· (u
8
3u
7
+ 2u
6
+ u
5
3u
4
+ 5u
3
+ 2u
2
7u 2)
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u(u
2
+ 1)(u
2
+ 3)(u
4
+ u
2
u + 1)
2
(u
6
+ u
5
+ ··· + 2u + 1)
2
· (u
8
+ 4u
6
+ ··· + 6u + 2)(u
10
3u
9
+ ··· 16u + 5)
c
6
, c
11
, c
12
(u + 1)
3
(u
2
+ 1)(u
5
+ u
4
3u
3
2u
2
+ 2u 1)
2
· ((u
6
+ u
5
2u
4
+ 2u
2
2u 1)
2
)(u
8
3u
7
+ ··· 12u + 13)
· (u
8
3u
7
+ 2u
6
+ u
5
3u
4
+ 5u
3
+ 2u
2
7u 2)
31
IX. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
5
(y
5
15y
4
+ 93y
3
210y
2
28y 1)
2
· (y
6
9y
5
+ 20y
4
+ 14y
3
16y
2
48y + 1)
2
· (y
8
17y
7
+ ··· 2561y + 16)(y
8
11y
7
+ ··· 28562y + 28561)
c
2
, c
6
, c
7
c
11
, c
12
(y 1)
3
(y + 1)
2
(y
5
7y
4
+ 17y
3
14y
2
1)
2
· (y
6
5y
5
+ 8y
4
6y
3
+ 8y
2
8y + 1)
2
· (y
8
7y
7
+ 19y
6
11y
5
48y
4
+ 98y
3
+ y
2
170y + 169)
· (y
8
5y
7
+ 4y
6
+ 21y
5
39y
4
31y
3
+ 86y
2
57y + 4)
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y(y + 1)
2
(y + 3)
2
(y
4
+ 2y
3
+ 3y
2
+ y + 1)
2
· (y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
2
· (y
8
+ 8y
7
+ 24y
6
+ 25y
5
38y
4
133y
3
115y
2
32y + 4)
· (y
10
+ 7y
9
+ ··· + 124y + 25)
32