12n
0601
(K12n
0601
)
A knot diagram
1
Linearized knot diagam
3 7 10 12 11 2 12 1 4 3 5 8
Solving Sequence
4,9
10 3
1,11
8 12 5 6 7 2
c
9
c
3
c
10
c
8
c
12
c
4
c
5
c
7
c
2
c
1
, c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
12
u
11
3u
10
18u
9
28u
8
82u
7
102u
6
220u
5
203u
4
209u
3
+ 9u
2
+ 16b 46u + 22,
3u
12
2u
11
7u
10
+ 6u
9
6u
8
+ 54u
7
+ 28u
6
+ 198u
5
+ 151u
4
+ 188u
3
133u
2
+ 32a + 12u 54,
u
13
+ 3u
12
+ 9u
11
+ 17u
10
+ 36u
9
+ 52u
8
+ 86u
7
+ 86u
6
+ 81u
5
+ 27u
4
+ 25u
3
7u
2
+ 2u 2i
I
u
2
= h−5u
9
+ 25u
8
15u
7
+ 23u
6
165u
5
+ 221u
4
167u
3
+ 423u
2
+ 144b 112u + 44,
73u
9
23u
8
+ 3u
7
433u
6
+ 465u
5
307u
4
+ 1531u
3
+ 63u
2
+ 288a + 584u 52,
u
10
u
9
+ u
8
7u
7
+ 11u
6
13u
5
+ 33u
4
23u
3
+ 26u
2
20u + 8i
I
u
3
= ha
3
u + a
3
a
2
u + 2a
2
3au + b 3a u 3, 2a
4
3a
3
u + a
3
6a
2
+ 3au 5a + u 1, u
2
+ 1i
I
u
4
= hb + 1, 6a u 3, u
2
+ 3i
I
u
5
= h2a
2
+ b 2a + 2, 2a
3
2a
2
+ 3a 1, u 1i
I
v
1
= ha, b + 1, v 1i
* 6 irreducible components of dim
C
= 0, with total 37 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
hu
12
u
11
+· · ·+16b+22, 3u
12
2u
11
+· · ·+32a54, u
13
+3u
12
+· · ·+2u2i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
3
=
u
u
3
+ u
a
1
=
3
32
u
12
+
1
16
u
11
+ ···
3
8
u +
27
16
0.0625000u
12
+ 0.0625000u
11
+ ··· + 2.87500u 1.37500
a
11
=
u
2
+ 1
u
4
+ 2u
2
a
8
=
3
32
u
12
+
1
16
u
11
+ ···
3
8
u +
27
16
3
16
u
12
+
3
4
u
11
+ ···
1
2
u
5
8
a
12
=
1
1
8
u
11
3
8
u
10
+ ···
1
4
u +
1
4
a
5
=
u
1
8
u
12
+
3
8
u
11
+ ··· +
1
4
u
2
+
3
4
u
a
6
=
u
3
2u
1
8
u
12
+
3
8
u
11
+ ··· +
1
4
u
2
+
3
4
u
a
7
=
1
32
u
12
+
1
8
u
11
+ ··· +
5
2
u +
5
16
1
8
u
12
+
1
8
u
11
+ ··· 3u +
13
8
a
2
=
3
32
u
12
+
1
4
u
11
+ ··· +
3
4
u +
15
16
1
8
u
12
+
1
16
u
11
+ ··· +
29
8
u
7
4
(ii) Obstruction class = 1
(iii) Cusp Shapes =
17
8
u
12
27
4
u
11
159
8
u
10
153
4
u
9
317
4
u
8
469
4
u
7
377
2
u
6
781
4
u
5
1383
8
u
4
58u
3
309
8
u
2
+
9
2
u
15
4
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
13
+ 10u
12
+ ··· + 651u + 169
c
2
, c
6
u
13
6u
12
+ ··· 27u + 13
c
3
, c
4
, c
5
c
9
, c
10
, c
11
u
13
3u
12
+ ··· + 2u + 2
c
7
, c
8
, c
12
u
13
+ 6u
12
+ ··· + 33u + 13
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
13
10y
12
+ ··· 63933y 28561
c
2
, c
6
y
13
10y
12
+ ··· + 651y 169
c
3
, c
4
, c
5
c
9
, c
10
, c
11
y
13
+ 9y
12
+ ··· 24y 4
c
7
, c
8
, c
12
y
13
10y
12
+ ··· + 1531y 169
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.052333 + 0.714648I
a = 1.60779 + 0.26845I
b = 1.60510 + 0.10103I
8.97858 + 3.36382I 4.98253 3.88513I
u = 0.052333 0.714648I
a = 1.60779 0.26845I
b = 1.60510 0.10103I
8.97858 3.36382I 4.98253 + 3.88513I
u = 0.962101 + 0.964907I
a = 0.415380 + 1.110690I
b = 1.29540 + 0.78987I
0.19846 + 6.55527I 1.94504 5.19831I
u = 0.962101 0.964907I
a = 0.415380 1.110690I
b = 1.29540 0.78987I
0.19846 6.55527I 1.94504 + 5.19831I
u = 0.024468 + 0.460540I
a = 0.557073 + 0.142637I
b = 0.684651 + 0.431349I
1.04755 1.45507I 1.76075 + 3.94050I
u = 0.024468 0.460540I
a = 0.557073 0.142637I
b = 0.684651 0.431349I
1.04755 + 1.45507I 1.76075 3.94050I
u = 0.351244
a = 1.70634
b = 0.413951
0.867716 13.5770
u = 0.19008 + 1.69584I
a = 0.448130 + 0.064643I
b = 1.186010 + 0.315331I
13.21680 1.39421I 0.43458 + 4.61417I
u = 0.19008 1.69584I
a = 0.448130 0.064643I
b = 1.186010 0.315331I
13.21680 + 1.39421I 0.43458 4.61417I
u = 0.89659 + 1.48771I
a = 0.615979 1.008550I
b = 1.44106 0.72214I
5.5396 13.0547I 2.53712 + 6.01217I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.89659 1.48771I
a = 0.615979 + 1.008550I
b = 1.44106 + 0.72214I
5.5396 + 13.0547I 2.53712 6.01217I
u = 1.34323 + 1.17979I
a = 0.280776 0.579108I
b = 0.32213 1.39813I
9.24321 + 5.55521I 5.42087 2.60784I
u = 1.34323 1.17979I
a = 0.280776 + 0.579108I
b = 0.32213 + 1.39813I
9.24321 5.55521I 5.42087 + 2.60784I
6
II. I
u
2
= h−5u
9
+ 25u
8
+ · · · + 144b + 44, 73u
9
23u
8
+ · · · + 288a
52, u
10
u
9
+ · · · 20u + 8i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
3
=
u
u
3
+ u
a
1
=
0.253472u
9
+ 0.0798611u
8
+ ··· 2.02778u + 0.180556
0.0347222u
9
0.173611u
8
+ ··· + 0.777778u 0.305556
a
11
=
u
2
+ 1
u
4
+ 2u
2
a
8
=
0.0104167u
9
+ 0.0104167u
8
+ ··· + 2.95833u 1.29167
0.0486111u
9
0.118056u
8
+ ··· + 2.13889u 1.02778
a
12
=
0.201389u
9
+ 0.131944u
8
+ ··· 3.11111u 0.0277778
1
36
u
9
5
36
u
8
+ ··· +
2
9
u
4
9
a
5
=
0.194444u
9
+ 0.222222u
8
+ ··· 6.30556u + 4.11111
0.180556u
9
+ 0.152778u
8
+ ··· 0.944444u + 1.38889
a
6
=
0.0138889u
9
+ 0.0694444u
8
+ ··· 3.36111u + 2.72222
0.180556u
9
+ 0.152778u
8
+ ··· 2.94444u + 1.38889
a
7
=
0.0833333u
9
+ 0.0833333u
8
+ ··· + 4.29167u 2.58333
0.0555556u
9
0.152778u
8
+ ··· + 3.69444u 1.88889
a
2
=
0.253472u
9
0.0451389u
8
+ ··· 1.52778u + 0.680556
0.0902778u
9
0.0486111u
8
+ ··· 1.22222u + 1.19444
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
5
12
u
9
19
12
u
8
+
5
4
u
7
29
12
u
6
+
43
4
u
5
191
12
u
4
+
215
12
u
3
111
4
u
2
+
43
3
u
29
3
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
5
+ 8u
4
+ 22u
3
+ 25u
2
+ 15u + 1)
2
c
2
, c
6
(u
5
+ 2u
4
2u
3
3u
2
+ 3u + 1)
2
c
3
, c
4
, c
5
c
9
, c
10
, c
11
u
10
+ u
9
+ u
8
+ 7u
7
+ 11u
6
+ 13u
5
+ 33u
4
+ 23u
3
+ 26u
2
+ 20u + 8
c
7
, c
8
, c
12
(u
5
2u
4
+ 2u
3
+ u
2
u + 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
5
20y
4
+ 114y
3
+ 19y
2
+ 175y 1)
2
c
2
, c
6
(y
5
8y
4
+ 22y
3
25y
2
+ 15y 1)
2
c
3
, c
4
, c
5
c
9
, c
10
, c
11
y
10
+ y
9
+ ··· + 16y + 64
c
7
, c
8
, c
12
(y
5
+ 6y
3
y
2
y 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.252054 + 1.091140I
a = 0.21289 + 1.43906I
b = 0.833800
4.49352 4.94304 + 0.I
u = 0.252054 1.091140I
a = 0.21289 1.43906I
b = 0.833800
4.49352 4.94304 + 0.I
u = 0.131365 + 1.228810I
a = 0.400425 + 0.309301I
b = 0.317129 + 0.618084I
1.43849 1.10891I 6.36548 + 2.04112I
u = 0.131365 1.228810I
a = 0.400425 0.309301I
b = 0.317129 0.618084I
1.43849 + 1.10891I 6.36548 2.04112I
u = 0.507034 + 0.340097I
a = 0.68020 1.90126I
b = 0.317129 0.618084I
1.43849 + 1.10891I 6.36548 2.04112I
u = 0.507034 0.340097I
a = 0.68020 + 1.90126I
b = 0.317129 + 0.618084I
1.43849 1.10891I 6.36548 + 2.04112I
u = 1.65017 + 0.62297I
a = 0.174325 0.526449I
b = 1.09977 1.12945I
8.62005 + 4.12490I 5.10604 2.15443I
u = 1.65017 0.62297I
a = 0.174325 + 0.526449I
b = 1.09977 + 1.12945I
8.62005 4.12490I 5.10604 + 2.15443I
u = 1.27379 + 1.40682I
a = 0.467845 0.780449I
b = 1.09977 1.12945I
8.62005 + 4.12490I 5.10604 2.15443I
u = 1.27379 1.40682I
a = 0.467845 + 0.780449I
b = 1.09977 + 1.12945I
8.62005 4.12490I 5.10604 + 2.15443I
10
III. I
u
3
= ha
3
u + a
3
a
2
u + 2a
2
3au + b 3a u 3, 2a
4
3a
3
u + a
3
6a
2
+ 3au 5a + u 1, u
2
+ 1i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
10
=
1
1
a
3
=
u
0
a
1
=
a
a
3
u a
3
+ a
2
u 2a
2
+ 3au + 3a + u + 3
a
11
=
0
1
a
8
=
a
3a
3
u a
3
+ a
2
u 4a
2
+ 8au + 5a + 3u + 5
a
12
=
1
4a
3
u + 6a
2
12au 2a 5u 4
a
5
=
u
4a
3
+ 6a
2
u 2au + 12a 3u + 5
a
6
=
u
4a
3
+ 6a
2
u 2au + 12a 4u + 5
a
7
=
a
3
u + a
3
a
2
u + 2a
2
3au 4a u 3
2a
3
u 2a
3
+ 3a
2
u + 3a
2
7au + 4a 4u
a
2
=
a
3
u a
3
+ a
2
u 2a
2
+ 3au + 4a + u + 3
a
3
u a
3
+ a
2
u 2a
2
+ 3au + 3a + u + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a
3
u + 4a
3
4a
2
u 8a
2
+ 16au 4a + 4u + 4
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
4
u
3
+ 3u
2
2u + 1)
2
c
2
, c
6
u
8
u
6
+ 3u
4
2u
2
+ 1
c
3
, c
4
, c
5
c
9
, c
10
, c
11
(u
2
+ 1)
4
c
7
, c
8
, c
12
u
8
5u
6
+ 7u
4
2u
2
+ 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
c
2
, c
6
(y
4
y
3
+ 3y
2
2y + 1)
2
c
3
, c
4
, c
5
c
9
, c
10
, c
11
(y + 1)
8
c
7
, c
8
, c
12
(y
4
5y
3
+ 7y
2
2y + 1)
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.620943 + 0.162823I
b = 0.506844 + 0.395123I
3.07886 + 1.41510I 0.17326 4.90874I
u = 1.000000I
a = 1.23497 + 0.98948I
b = 0.506844 + 0.395123I
3.07886 1.41510I 0.17326 + 4.90874I
u = 1.000000I
a = 0.391114 + 0.016070I
b = 1.55249 + 0.10488I
10.08060 + 3.16396I 3.82674 2.56480I
u = 1.000000I
a = 1.74703 + 0.33163I
b = 1.55249 + 0.10488I
10.08060 3.16396I 3.82674 + 2.56480I
u = 1.000000I
a = 0.620943 0.162823I
b = 0.506844 0.395123I
3.07886 1.41510I 0.17326 + 4.90874I
u = 1.000000I
a = 1.23497 0.98948I
b = 0.506844 0.395123I
3.07886 + 1.41510I 0.17326 4.90874I
u = 1.000000I
a = 0.391114 0.016070I
b = 1.55249 0.10488I
10.08060 3.16396I 3.82674 + 2.56480I
u = 1.000000I
a = 1.74703 0.33163I
b = 1.55249 0.10488I
10.08060 + 3.16396I 3.82674 2.56480I
14
IV. I
u
4
= hb + 1, 6a u 3, u
2
+ 3i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
10
=
1
3
a
3
=
u
2u
a
1
=
1
6
u +
1
2
1
a
11
=
2
3
a
8
=
1
6
u +
1
2
1
a
12
=
1
0
a
5
=
u
u
a
6
=
u
2u
a
7
=
1
6
u
1
2
1
a
2
=
7
6
u +
1
2
2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
12
(u 1)
2
c
3
, c
4
, c
5
c
9
, c
10
, c
11
u
2
+ 3
c
6
, c
7
, c
8
(u + 1)
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
12
(y 1)
2
c
3
, c
4
, c
5
c
9
, c
10
, c
11
(y + 3)
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.73205I
a = 0.500000 + 0.288675I
b = 1.00000
13.1595 0
u = 1.73205I
a = 0.500000 0.288675I
b = 1.00000
13.1595 0
18
V. I
u
5
= h2a
2
+ b 2a + 2, 2a
3
2a
2
+ 3a 1, u 1i
(i) Arc colorings
a
4
=
0
1
a
9
=
1
0
a
10
=
1
1
a
3
=
1
2
a
1
=
a
2a
2
+ 2a 2
a
11
=
2
3
a
8
=
a
2a
2
+ 2
a
12
=
1
2
a
5
=
1
1
a
6
=
3
4
a
7
=
2a
2
+ 3a 2
2a
2
+ 4a 2
a
2
=
2a
2
+ a + 2
2a
2
+ 2a + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
3
+ 2u
2
+ u + 4
c
2
, c
6
, c
7
c
8
, c
12
u
3
u 2
c
3
, c
4
, c
5
c
9
, c
10
, c
11
(u + 1)
3
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
3
2y
2
15y 16
c
2
, c
6
, c
7
c
8
, c
12
y
3
2y
2
+ y 4
c
3
, c
4
, c
5
c
9
, c
10
, c
11
(y 1)
3
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.301696 + 1.081510I
b = 0.760690 + 0.857874I
1.64493 6.00000
u = 1.00000
a = 0.301696 1.081510I
b = 0.760690 0.857874I
1.64493 6.00000
u = 1.00000
a = 0.396608
b = 1.52138
1.64493 6.00000
22
VI. I
v
1
= ha, b + 1, v 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
1
0
a
10
=
1
0
a
3
=
1
0
a
1
=
0
1
a
11
=
1
0
a
8
=
1
1
a
12
=
1
0
a
5
=
1
0
a
6
=
1
0
a
7
=
0
1
a
2
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
12
u 1
c
3
, c
4
, c
5
c
9
, c
10
, c
11
u
c
6
, c
7
, c
8
u + 1
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
12
y 1
c
3
, c
4
, c
5
c
9
, c
10
, c
11
y
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
0 0
26
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
3
(u
3
+ 2u
2
+ u + 4)(u
4
u
3
+ 3u
2
2u + 1)
2
· ((u
5
+ 8u
4
+ 22u
3
+ 25u
2
+ 15u + 1)
2
)(u
13
+ 10u
12
+ ··· + 651u + 169)
c
2
(u 1)
3
(u
3
u 2)(u
5
+ 2u
4
2u
3
3u
2
+ 3u + 1)
2
· (u
8
u
6
+ 3u
4
2u
2
+ 1)(u
13
6u
12
+ ··· 27u + 13)
c
3
, c
4
, c
5
c
9
, c
10
, c
11
u(u + 1)
3
(u
2
+ 1)
4
(u
2
+ 3)
· (u
10
+ u
9
+ u
8
+ 7u
7
+ 11u
6
+ 13u
5
+ 33u
4
+ 23u
3
+ 26u
2
+ 20u + 8)
· (u
13
3u
12
+ ··· + 2u + 2)
c
6
(u + 1)
3
(u
3
u 2)(u
5
+ 2u
4
2u
3
3u
2
+ 3u + 1)
2
· (u
8
u
6
+ 3u
4
2u
2
+ 1)(u
13
6u
12
+ ··· 27u + 13)
c
7
, c
8
(u + 1)
3
(u
3
u 2)(u
5
2u
4
+ 2u
3
+ u
2
u + 1)
2
· (u
8
5u
6
+ 7u
4
2u
2
+ 1)(u
13
+ 6u
12
+ ··· + 33u + 13)
c
12
(u 1)
3
(u
3
u 2)(u
5
2u
4
+ 2u
3
+ u
2
u + 1)
2
· (u
8
5u
6
+ 7u
4
2u
2
+ 1)(u
13
+ 6u
12
+ ··· + 33u + 13)
27
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
3
(y
3
2y
2
15y 16)(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
· (y
5
20y
4
+ 114y
3
+ 19y
2
+ 175y 1)
2
· (y
13
10y
12
+ ··· 63933y 28561)
c
2
, c
6
(y 1)
3
(y
3
2y
2
+ y 4)(y
4
y
3
+ 3y
2
2y + 1)
2
· ((y
5
8y
4
+ 22y
3
25y
2
+ 15y 1)
2
)(y
13
10y
12
+ ··· + 651y 169)
c
3
, c
4
, c
5
c
9
, c
10
, c
11
y(y 1)
3
(y + 1)
8
(y + 3)
2
(y
10
+ y
9
+ ··· + 16y + 64)
· (y
13
+ 9y
12
+ ··· 24y 4)
c
7
, c
8
, c
12
(y 1)
3
(y
3
2y
2
+ y 4)(y
4
5y
3
+ 7y
2
2y + 1)
2
· ((y
5
+ 6y
3
y
2
y 1)
2
)(y
13
10y
12
+ ··· + 1531y 169)
28