12n
0602
(K12n
0602
)
A knot diagram
1
Linearized knot diagam
3 7 9 8 10 2 12 4 6 5 7 8
Solving Sequence
3,9 4,7
2 1 6 10 8 5 12 11
c
3
c
2
c
1
c
6
c
9
c
8
c
4
c
12
c
11
c
5
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
9
3u
8
7u
7
10u
6
9u
5
+ 2u
4
+ 5u
3
+ 11u
2
+ 8b 6u 2,
u
8
+ 5u
6
u
5
+ 6u
4
2u
3
+ u
2
+ 4a + 2u 2, u
10
+ 6u
8
3u
7
+ 11u
6
13u
5
+ 9u
4
12u
3
+ 7u
2
+ 2i
I
u
2
= h−937u
13
2472u
12
+ ··· + 1987b 6836, 12531u
13
+ 27338u
12
+ ··· + 19870a + 85927,
u
14
+ 3u
13
+ ··· + 22u + 5i
I
u
3
= h−u
4
a u
2
a u
3
au + b + a u 1,
2u
5
a 2u
4
a + u
5
6u
3
a + u
4
6u
2
a + 2u
3
+ 2a
2
6au + 3u
2
6a + u + 3,
u
6
+ 3u
4
+ u
3
+ 2u
2
+ 2u 1i
I
u
4
= h2u
9
a + 10u
9
+ ··· + 7a + 1, 2u
9
+ 3u
8
+ ··· + a
2
4, u
10
u
9
+ 4u
8
4u
7
+ 6u
6
6u
5
+ 3u
4
3u
3
+ 1i
I
u
5
= hb 1, 6a u 3, u
2
+ 3i
I
u
6
= hb u, 2a + u + 1, u
2
+ 1i
I
v
1
= ha, b 1, v + 1i
* 7 irreducible components of dim
C
= 0, with total 61 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−u
9
3u
8
+ · · · + 8b 2, u
8
+ 5u
6
u
5
+ 6u
4
2u
3
+ u
2
+ 4a +
2u 2, u
10
+ 6u
8
+ · · · + 7u
2
+ 2i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
7
=
1
4
u
8
5
4
u
6
+ ···
1
2
u +
1
2
1
8
u
9
+
3
8
u
8
+ ··· +
3
4
u +
1
4
a
2
=
1
4
u
8
5
4
u
6
+ ···
1
2
u +
1
2
3
8
u
9
+
3
8
u
8
+ ···
5
4
u +
1
4
a
1
=
3
8
u
9
+
1
8
u
8
+ ···
7
4
u +
3
4
3
8
u
9
+
3
8
u
8
+ ···
5
4
u +
1
4
a
6
=
1
1
2
u
9
+
1
2
u
8
+ ··· + u + 1
a
10
=
u
1
2
u
9
1
2
u
8
+ ··· + 2u 1
a
8
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
2u
2
a
12
=
1
4
u
8
+
5
4
u
6
+ ···
3
2
u +
1
2
1
8
u
9
+
1
8
u
8
+ ···
3
4
u +
3
4
a
11
=
u
3
2u
1
2
u
9
+
1
2
u
8
+ ··· 2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
3
2
u
9
1
2
u
8
+
17
2
u
7
8u
6
+
25
2
u
5
25u
4
+
17
2
u
3
27
2
u
2
+ 13u + 1
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
10
+ u
9
+ 2u
8
3u
7
+ 12u
6
+ 24u
5
+ 46u
4
+ 37u
3
+ 7u
2
3u + 4
c
2
, c
6
, c
7
c
11
, c
12
u
10
3u
9
+ 4u
8
u
7
4u
6
+ 6u
5
3u
3
+ u
2
+ u + 2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
10
+ 6u
8
+ 3u
7
+ 11u
6
+ 13u
5
+ 9u
4
+ 12u
3
+ 7u
2
+ 2
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
10
+ 3y
9
+ ··· + 47y + 16
c
2
, c
6
, c
7
c
11
, c
12
y
10
y
9
+ 2y
8
+ 3y
7
+ 12y
6
24y
5
+ 46y
4
37y
3
+ 7y
2
+ 3y + 4
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
10
+ 12y
9
+ ··· + 28y + 4
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.849669 + 0.278925I
a = 0.126908 1.402190I
b = 0.935978 + 0.707374I
2.59736 + 5.48528I 0.63906 6.67204I
u = 0.849669 0.278925I
a = 0.126908 + 1.402190I
b = 0.935978 0.707374I
2.59736 5.48528I 0.63906 + 6.67204I
u = 0.179655 + 1.191160I
a = 0.250838 0.636140I
b = 0.46356 + 1.36046I
2.21767 1.59735I 7.51312 + 4.64580I
u = 0.179655 1.191160I
a = 0.250838 + 0.636140I
b = 0.46356 1.36046I
2.21767 + 1.59735I 7.51312 4.64580I
u = 0.44148 + 1.44610I
a = 0.552527 + 1.275850I
b = 1.28583 0.66001I
8.2686 15.1646I 7.51854 + 8.25672I
u = 0.44148 1.44610I
a = 0.552527 1.275850I
b = 1.28583 + 0.66001I
8.2686 + 15.1646I 7.51854 8.25672I
u = 0.171957 + 0.454648I
a = 0.655512 0.286314I
b = 0.281118 + 0.559566I
0.087563 1.088810I 1.48967 + 6.22992I
u = 0.171957 0.454648I
a = 0.655512 + 0.286314I
b = 0.281118 0.559566I
0.087563 + 1.088810I 1.48967 6.22992I
u = 0.05658 + 1.78531I
a = 0.519269 + 0.055233I
b = 0.904241 0.202548I
16.0502 + 0.8822I 5.09706 8.51458I
u = 0.05658 1.78531I
a = 0.519269 0.055233I
b = 0.904241 + 0.202548I
16.0502 0.8822I 5.09706 + 8.51458I
5
II. I
u
2
= h−937u
13
2472u
12
+ · · · + 1987b 6836, 12531u
13
+ 27338u
12
+
· · · + 19870a + 85927, u
14
+ 3u
13
+ · · · + 22u + 5i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
7
=
0.630649u
13
1.37584u
12
+ ··· 15.3917u 4.32446
0.471565u
13
+ 1.24409u
12
+ ··· + 9.17765u + 3.44036
a
2
=
0.253296u
13
+ 0.379668u
12
+ ··· + 0.855511u + 0.00558631
0.425264u
13
0.827378u
12
+ ··· 8.90941u 2.81228
a
1
=
0.171968u
13
0.447710u
12
+ ··· 8.05390u 2.80669
0.425264u
13
0.827378u
12
+ ··· 8.90941u 2.81228
a
6
=
0.693105u
13
1.63795u
12
+ ··· 20.3068u 6.28908
0.351787u
13
+ 1.16608u
12
+ ··· + 6.24459u + 3.20684
a
10
=
0.241369u
13
0.372320u
12
+ ··· 0.359235u + 0.934474
0.330649u
13
+ 0.975843u
12
+ ··· + 16.4917u + 5.22446
a
8
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
2u
2
a
12
=
0.342577u
13
0.983191u
12
+ ··· 14.9880u 5.16452
0.112733u
13
0.0145949u
12
+ ··· 3.34877u 0.572723
a
11
=
0.0892803u
13
0.603523u
12
+ ··· 14.1325u 6.15893
0.537997u
13
0.841973u
12
+ ··· 12.2582u 3.38500
(ii) Obstruction class = 1
(iii) Cusp Shapes =
2058
1987
u
13
+
6600
1987
u
12
+ ··· +
37538
1987
u +
12194
1987
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
7
+ 3u
6
+ 7u
5
+ 8u
4
+ 9u
3
+ 6u
2
+ 5u + 1)
2
c
2
, c
6
, c
7
c
11
, c
12
(u
7
+ u
6
u
5
2u
4
+ u
3
+ 2u
2
+ u 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
14
3u
13
+ ··· 22u + 5
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
7
+ 5y
6
+ 19y
5
+ 36y
4
+ 49y
3
+ 38y
2
+ 13y 1)
2
c
2
, c
6
, c
7
c
11
, c
12
(y
7
3y
6
+ 7y
5
8y
4
+ 9y
3
6y
2
+ 5y 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
14
+ 11y
13
+ ··· 4y + 25
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.370785 + 0.946704I
a = 0.209881 0.303567I
b = 0.597306 + 0.773845I
0.562491 0.955395I 0.68929 + 2.37083I
u = 0.370785 0.946704I
a = 0.209881 + 0.303567I
b = 0.597306 0.773845I
0.562491 + 0.955395I 0.68929 2.37083I
u = 1.022710 + 0.247588I
a = 0.520411 1.220230I
b = 1.139460 + 0.630170I
2.92618 9.93065I 4.46028 + 7.33664I
u = 1.022710 0.247588I
a = 0.520411 + 1.220230I
b = 1.139460 0.630170I
2.92618 + 9.93065I 4.46028 7.33664I
u = 0.306472 + 1.132160I
a = 0.482637 0.675154I
b = 0.502855
4.24127 5.93921 + 0.I
u = 0.306472 1.132160I
a = 0.482637 + 0.675154I
b = 0.502855
4.24127 5.93921 + 0.I
u = 0.736932 + 1.071510I
a = 0.318588 0.053278I
b = 0.985336 + 0.506466I
5.38528 + 3.93070I 6.25941 4.87230I
u = 0.736932 1.071510I
a = 0.318588 + 0.053278I
b = 0.985336 0.506466I
5.38528 3.93070I 6.25941 + 4.87230I
u = 0.538570 + 0.272073I
a = 0.71818 1.43908I
b = 0.597306 + 0.773845I
0.562491 0.955395I 0.68929 + 2.37083I
u = 0.538570 0.272073I
a = 0.71818 + 1.43908I
b = 0.597306 0.773845I
0.562491 + 0.955395I 0.68929 2.37083I
9
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.36817 + 1.45006I
a = 0.797752 + 1.077130I
b = 1.139460 0.630170I
2.92618 + 9.93065I 4.46028 7.33664I
u = 0.36817 1.45006I
a = 0.797752 1.077130I
b = 1.139460 + 0.630170I
2.92618 9.93065I 4.46028 + 7.33664I
u = 0.24721 + 1.49766I
a = 0.921588 + 0.632363I
b = 0.985336 0.506466I
5.38528 3.93070I 6.25941 + 4.87230I
u = 0.24721 1.49766I
a = 0.921588 0.632363I
b = 0.985336 + 0.506466I
5.38528 + 3.93070I 6.25941 4.87230I
10
III. I
u
3
= h−u
4
a u
2
a u
3
au + b + a u 1, 2u
5
a + u
5
+ · · · 6a +
3, u
6
+ 3u
4
+ u
3
+ 2u
2
+ 2u 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
7
=
a
u
4
a + u
2
a + u
3
+ au a + u + 1
a
2
=
a
u
5
a + 2u
3
a + u
2
a u
3
u 1
a
1
=
u
5
a + 2u
3
a + u
2
a u
3
+ a u 1
u
5
a + 2u
3
a + u
2
a u
3
u 1
a
6
=
1
u
5
+ u
4
+ 2u
3
+ 2u
2
+ u 1
a
10
=
u
u
5
u
4
+ u
3
u
2
2u + 1
a
8
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
2u
2
a
12
=
u
3
a u
3
+ au + a 2u 1
1
a
11
=
u
3
2u
u
4
+ u
3
+ u
2
+ 2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
5
+ 4u
4
+ 8u
3
+ 12u
2
+ 4u + 2
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
12
+ 7u
11
+ ··· + 438u + 169
c
2
, c
6
, c
7
c
11
, c
12
u
12
3u
11
+ ··· + 42u 13
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(u
6
+ 3u
4
u
3
+ 2u
2
2u 1)
2
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
12
3y
11
+ ··· 59686y + 28561
c
2
, c
6
, c
7
c
11
, c
12
y
12
7y
11
+ ··· 438y + 169
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y
6
+ 6y
5
+ 13y
4
+ 9y
3
6y
2
8y + 1)
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.841864
a = 0.445035 + 1.177780I
b = 0.719261 0.742974I
3.23778 2.68180
u = 0.841864
a = 0.445035 1.177780I
b = 0.719261 + 0.742974I
3.23778 2.68180
u = 0.126468 + 1.352400I
a = 0.034921 + 1.148040I
b = 1.026470 0.870245I
11.65360 3.39374I 10.36018 + 3.51762I
u = 0.126468 + 1.352400I
a = 0.383840 + 0.027542I
b = 1.59190 0.18598I
11.65360 3.39374I 10.36018 + 3.51762I
u = 0.126468 1.352400I
a = 0.034921 1.148040I
b = 1.026470 + 0.870245I
11.65360 + 3.39374I 10.36018 3.51762I
u = 0.126468 1.352400I
a = 0.383840 0.027542I
b = 1.59190 + 0.18598I
11.65360 + 3.39374I 10.36018 3.51762I
u = 0.376468 + 1.319680I
a = 0.443330 1.186910I
b = 1.27617 + 0.73937I
5.05799 + 8.77346I 5.56216 5.90094I
u = 0.376468 + 1.319680I
a = 0.392175 + 0.613857I
b = 0.260915 1.156860I
5.05799 + 8.77346I 5.56216 5.90094I
u = 0.376468 1.319680I
a = 0.443330 + 1.186910I
b = 1.27617 0.73937I
5.05799 8.77346I 5.56216 + 5.90094I
u = 0.376468 1.319680I
a = 0.392175 0.613857I
b = 0.260915 + 1.156860I
5.05799 8.77346I 5.56216 + 5.90094I
14
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.341865
a = 0.468459
b = 1.13466
2.71328 5.16290
u = 0.341865
a = 4.04594
b = 0.752839
2.71328 5.16290
15
IV.
I
u
4
= h2u
9
a+10u
9
+· · ·+7a+1, 2u
9
+3u
8
+· · ·+a
2
4, u
10
u
9
+· · ·3u
3
+1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
7
=
a
0.117647au
9
0.588235u
9
+ ··· 0.411765a 0.0588235
a
2
=
0.588235au
9
+ 0.0588235u
9
+ ··· 0.0588235a + 2.70588
0.176471au
9
0.117647u
9
+ ··· + 0.117647a 1.41176
a
1
=
0.411765au
9
0.0588235u
9
+ ··· + 0.0588235a + 1.29412
0.176471au
9
0.117647u
9
+ ··· + 0.117647a 1.41176
a
6
=
u
9
4u
7
5u
5
+ 3u
u
9
+ 3u
7
+ 3u
5
u
a
10
=
2u
9
u
8
+ 8u
7
5u
6
+ 12u
5
9u
4
+ 6u
3
6u
2
u 1
2u
9
+ u
8
8u
7
+ 4u
6
12u
5
+ 6u
4
5u
3
+ 4u
2
+ 3u + 2
a
8
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
2u
2
a
12
=
0.588235au
9
+ 0.0588235u
9
+ ··· 0.0588235a + 0.705882
1
a
11
=
u
6
+ 3u
4
+ 2u
2
1
u
6
2u
4
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
9
12u
7
12u
5
+ 4u
3
+ 8u 2
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
10
+ 5u
9
+ ··· + 4u + 1)
2
c
2
, c
6
, c
7
c
11
, c
12
(u
10
+ u
9
2u
8
4u
7
+ 4u
5
+ 3u
4
u
3
2u
2
+ 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(u
10
+ u
9
+ 4u
8
+ 4u
7
+ 6u
6
+ 6u
5
+ 3u
4
+ 3u
3
+ 1)
2
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
10
y
9
6y
7
+ 22y
6
+ 6y
5
+ 45y
4
+ 15y
3
+ 22y
2
+ 4y + 1)
2
c
2
, c
6
, c
7
c
11
, c
12
(y
10
5y
9
+ ··· 4y + 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y
10
+ 7y
9
+ 20y
8
+ 26y
7
+ 6y
6
22y
5
19y
4
+ 3y
3
+ 6y
2
+ 1)
2
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.839548 + 0.070481I
a = 0.900079 + 0.957609I
b = 1.018500 0.644891I
0.70717 + 4.40083I 1.25569 3.49859I
u = 0.839548 + 0.070481I
a = 0.01855 1.45994I
b = 0.400287 + 0.864056I
0.70717 + 4.40083I 1.25569 3.49859I
u = 0.839548 0.070481I
a = 0.900079 0.957609I
b = 1.018500 + 0.644891I
0.70717 4.40083I 1.25569 + 3.49859I
u = 0.839548 0.070481I
a = 0.01855 + 1.45994I
b = 0.400287 0.864056I
0.70717 4.40083I 1.25569 + 3.49859I
u = 0.090539 + 1.215350I
a = 1.57349 + 0.24896I
b = 1.236040 0.156723I
6.25064 + 1.53058I 5.48489 4.43065I
u = 0.090539 + 1.215350I
a = 0.23726 + 1.84586I
b = 0.926127 0.393188I
6.25064 + 1.53058I 5.48489 4.43065I
u = 0.090539 1.215350I
a = 1.57349 0.24896I
b = 1.236040 + 0.156723I
6.25064 1.53058I 5.48489 + 4.43065I
u = 0.090539 1.215350I
a = 0.23726 1.84586I
b = 0.926127 + 0.393188I
6.25064 1.53058I 5.48489 + 4.43065I
u = 0.383413 + 1.200420I
a = 0.734177 0.829669I
b = 0.608868 + 0.334904I
4.17865 4.51886 + 0.I
u = 0.383413 + 1.200420I
a = 0.073892 0.370754I
b = 0.608868 0.334904I
4.17865 4.51886 + 0.I
19
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.383413 1.200420I
a = 0.734177 + 0.829669I
b = 0.608868 0.334904I
4.17865 4.51886 + 0.I
u = 0.383413 1.200420I
a = 0.073892 + 0.370754I
b = 0.608868 + 0.334904I
4.17865 4.51886 + 0.I
u = 0.383851 + 1.270630I
a = 0.614423 1.130320I
b = 1.018500 + 0.644891I
0.70717 4.40083I 1.25569 + 3.49859I
u = 0.383851 + 1.270630I
a = 0.272551 + 0.291529I
b = 0.400287 0.864056I
0.70717 4.40083I 1.25569 + 3.49859I
u = 0.383851 1.270630I
a = 0.614423 + 1.130320I
b = 1.018500 0.644891I
0.70717 + 4.40083I 1.25569 3.49859I
u = 0.383851 1.270630I
a = 0.272551 0.291529I
b = 0.400287 + 0.864056I
0.70717 + 4.40083I 1.25569 3.49859I
u = 0.429649 + 0.392970I
a = 1.58670 1.31909I
b = 1.236040 + 0.156723I
6.25064 1.53058I 5.48489 + 4.43065I
u = 0.429649 + 0.392970I
a = 2.40274 2.38405I
b = 0.926127 + 0.393188I
6.25064 1.53058I 5.48489 + 4.43065I
u = 0.429649 0.392970I
a = 1.58670 + 1.31909I
b = 1.236040 0.156723I
6.25064 + 1.53058I 5.48489 4.43065I
u = 0.429649 0.392970I
a = 2.40274 + 2.38405I
b = 0.926127 0.393188I
6.25064 + 1.53058I 5.48489 4.43065I
20
V. I
u
5
= hb 1, 6a u 3, u
2
+ 3i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
3
a
7
=
1
6
u +
1
2
1
a
2
=
1
6
u +
1
2
1
a
1
=
1
6
u
1
2
1
a
6
=
1
0
a
10
=
u
u
a
8
=
u
2u
a
5
=
2
3
a
12
=
7
6
u
1
2
2u 1
a
11
=
u
2u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
(u 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
2
+ 3
c
6
, c
11
, c
12
(u + 1)
2
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
(y 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y + 3)
2
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.73205I
a = 0.500000 + 0.288675I
b = 1.00000
16.4493 12.0000
u = 1.73205I
a = 0.500000 0.288675I
b = 1.00000
16.4493 12.0000
24
VI. I
u
6
= hb u, 2a + u + 1, u
2
+ 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
1
a
7
=
1
2
u
1
2
u
a
2
=
1
2
u +
1
2
1
a
1
=
1
2
u +
3
2
1
a
6
=
1
2u
a
10
=
u
u + 2
a
8
=
u
0
a
5
=
0
1
a
12
=
1
2
u +
1
2
1
a
11
=
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u + 1)
2
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
c
11
, c
12
u
2
+ 1
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y 1)
2
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
c
11
, c
12
(y + 1)
2
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.500000 0.500000I
b = 1.000000I
1.64493 4.00000
u = 1.000000I
a = 0.500000 + 0.500000I
b = 1.000000I
1.64493 4.00000
28
VII. I
v
1
= ha, b 1, v + 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
1
0
a
4
=
1
0
a
7
=
0
1
a
2
=
1
1
a
1
=
0
1
a
6
=
1
0
a
10
=
1
0
a
8
=
1
0
a
5
=
1
0
a
12
=
1
1
a
11
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
29
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
u 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
c
6
, c
11
, c
12
u + 1
30
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
y 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
31
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
32
VIII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
3
(u + 1)
2
(u
7
+ 3u
6
+ 7u
5
+ 8u
4
+ 9u
3
+ 6u
2
+ 5u + 1)
2
· (u
10
+ u
9
+ 2u
8
3u
7
+ 12u
6
+ 24u
5
+ 46u
4
+ 37u
3
+ 7u
2
3u + 4)
· ((u
10
+ 5u
9
+ ··· + 4u + 1)
2
)(u
12
+ 7u
11
+ ··· + 438u + 169)
c
2
, c
7
(u 1)
3
(u
2
+ 1)(u
7
+ u
6
u
5
2u
4
+ u
3
+ 2u
2
+ u 1)
2
· (u
10
3u
9
+ 4u
8
u
7
4u
6
+ 6u
5
3u
3
+ u
2
+ u + 2)
· (u
10
+ u
9
2u
8
4u
7
+ 4u
5
+ 3u
4
u
3
2u
2
+ 1)
2
· (u
12
3u
11
+ ··· + 42u 13)
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u(u
2
+ 1)(u
2
+ 3)(u
6
+ 3u
4
u
3
+ 2u
2
2u 1)
2
· (u
10
+ 6u
8
+ 3u
7
+ 11u
6
+ 13u
5
+ 9u
4
+ 12u
3
+ 7u
2
+ 2)
· (u
10
+ u
9
+ 4u
8
+ 4u
7
+ 6u
6
+ 6u
5
+ 3u
4
+ 3u
3
+ 1)
2
· (u
14
3u
13
+ ··· 22u + 5)
c
6
, c
11
, c
12
(u + 1)
3
(u
2
+ 1)(u
7
+ u
6
u
5
2u
4
+ u
3
+ 2u
2
+ u 1)
2
· (u
10
3u
9
+ 4u
8
u
7
4u
6
+ 6u
5
3u
3
+ u
2
+ u + 2)
· (u
10
+ u
9
2u
8
4u
7
+ 4u
5
+ 3u
4
u
3
2u
2
+ 1)
2
· (u
12
3u
11
+ ··· + 42u 13)
33
IX. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
5
(y
7
+ 5y
6
+ 19y
5
+ 36y
4
+ 49y
3
+ 38y
2
+ 13y 1)
2
· (y
10
y
9
6y
7
+ 22y
6
+ 6y
5
+ 45y
4
+ 15y
3
+ 22y
2
+ 4y + 1)
2
· (y
10
+ 3y
9
+ ··· + 47y + 16)(y
12
3y
11
+ ··· 59686y + 28561)
c
2
, c
6
, c
7
c
11
, c
12
(y 1)
3
(y + 1)
2
(y
7
3y
6
+ 7y
5
8y
4
+ 9y
3
6y
2
+ 5y 1)
2
· (y
10
5y
9
+ ··· 4y + 1)
2
· (y
10
y
9
+ 2y
8
+ 3y
7
+ 12y
6
24y
5
+ 46y
4
37y
3
+ 7y
2
+ 3y + 4)
· (y
12
7y
11
+ ··· 438y + 169)
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y(y + 1)
2
(y + 3)
2
(y
6
+ 6y
5
+ 13y
4
+ 9y
3
6y
2
8y + 1)
2
· (y
10
+ 7y
9
+ 20y
8
+ 26y
7
+ 6y
6
22y
5
19y
4
+ 3y
3
+ 6y
2
+ 1)
2
· (y
10
+ 12y
9
+ ··· + 28y + 4)(y
14
+ 11y
13
+ ··· 4y + 25)
34