12n
0603
(K12n
0603
)
A knot diagram
1
Linearized knot diagam
3 7 12 8 10 2 11 4 3 7 5 9
Solving Sequence
4,8
5
9,12
1 3 11 7 2 6 10
c
4
c
8
c
12
c
3
c
11
c
7
c
2
c
6
c
10
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h478u
12
+ 178u
11
+ ··· + 122b 1078, a 1,
u
13
+ 8u
11
+ 3u
10
+ 25u
9
+ 18u
8
+ 32u
7
+ 33u
6
+ 10u
5
+ 14u
4
u
3
10u
2
+ 1i
I
u
2
= h2u
9
+ 7u
7
+ 4u
6
+ 7u
5
+ 10u
4
6u
3
+ 7u
2
+ 2b 8u + 2, a + 1,
u
10
+ 4u
8
+ 2u
7
+ 5u
6
+ 6u
5
2u
4
+ 6u
3
6u
2
+ 2u 1i
I
u
3
= hu
5
3u
4
+ 7u
3
16u
2
+ 9b + 8u 10, 19u
5
+ 39u
4
79u
3
+ 178u
2
+ 9a 35u + 226,
u
6
2u
5
+ 4u
4
9u
3
+ u
2
11u 1i
I
u
4
= hb, a u, u
2
u + 1i
* 4 irreducible components of dim
C
= 0, with total 31 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h478u
12
+ 178u
11
+ · · · + 122b 1078, a 1, u
13
+ 8u
11
+ · · · 10u
2
+ 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
5
=
1
u
2
a
9
=
u
u
a
12
=
1
3.91803u
12
1.45902u
11
+ ··· + 23.6721u + 8.83607
a
1
=
0.729508u
12
+ 0.114754u
11
+ ··· 3.91803u 0.459016
3.18852u
12
1.34426u
11
+ ··· + 19.7541u + 7.37705
a
3
=
3.91803u
12
+ 1.45902u
11
+ ··· 23.6721u 7.83607
2.60656u
12
0.803279u
11
+ ··· + 16.9262u + 6.21311
a
11
=
3.91803u
12
1.45902u
11
+ ··· + 23.6721u + 9.83607
3.18852u
12
1.34426u
11
+ ··· + 19.7541u + 7.37705
a
7
=
2.34426u
12
1.17213u
11
+ ··· + 15.3770u + 6.68852
0.549180u
12
0.0245902u
11
+ ··· + 4.19672u + 1.59836
a
2
=
6.62295u
12
+ 2.81148u
11
+ ··· 40.4918u 14.7459
1.68852u
12
+ 0.155738u
11
+ ··· + 12.2541u + 4.37705
a
6
=
5.24590u
12
+ 1.12295u
11
+ ··· 29.9836u 12.9918
0.655738u
12
2.32787u
11
+ ··· + 3.62295u + 0.311475
a
10
=
3.07377u
12
1.28689u
11
+ ··· + 20.2951u + 9.14754
3.12295u
12
0.811475u
11
+ ··· + 19.9918u + 7.74590
(ii) Obstruction class = 1
(iii) Cusp Shapes =
125
122
u
12
+
215
122
u
11
+
1077
122
u
10
+
1082
61
u
9
+
4329
122
u
8
+
4205
61
u
7
+
4804
61
u
6
+
6996
61
u
5
+
11113
122
u
4
+
8069
122
u
3
+
2702
61
u
2
6
61
u
979
61
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
13
+ 32u
12
+ ··· + 33u + 1
c
2
, c
6
u
13
2u
12
+ ··· 5u + 1
c
3
u
13
8u
12
+ ··· 9u + 2
c
4
, c
8
u
13
+ 8u
11
+ ··· 10u
2
+ 1
c
5
u
13
25u
12
+ ··· + 9173u + 2591
c
7
, c
10
u
13
+ 8u
12
+ ··· + 27u + 4
c
9
u
13
18u
11
+ ··· + 738u + 244
c
11
u
13
+ 8u
12
+ ··· + 20u + 4
c
12
u
13
+ u
12
+ ··· + u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
13
308y
12
+ ··· + 249y 1
c
2
, c
6
y
13
32y
12
+ ··· + 33y 1
c
3
y
13
+ 24y
11
+ ··· + 25y 4
c
4
, c
8
y
13
+ 16y
12
+ ··· + 20y 1
c
5
y
13
137y
12
+ ··· + 11823937y 6713281
c
7
, c
10
y
13
28y
12
+ ··· + 345y 16
c
9
y
13
36y
12
+ ··· 302036y 59536
c
11
y
13
+ 2y
12
+ ··· + 120y 16
c
12
y
13
25y
12
+ ··· 7y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.231299 + 1.092720I
a = 1.00000
b = 0.502972 0.016598I
0.96921 + 1.60705I 6.76099 3.52286I
u = 0.231299 1.092720I
a = 1.00000
b = 0.502972 + 0.016598I
0.96921 1.60705I 6.76099 + 3.52286I
u = 0.755051 + 0.130841I
a = 1.00000
b = 0.012282 + 0.611071I
1.91994 0.62113I 7.84819 + 2.13633I
u = 0.755051 0.130841I
a = 1.00000
b = 0.012282 0.611071I
1.91994 + 0.62113I 7.84819 2.13633I
u = 0.06382 + 1.54550I
a = 1.00000
b = 1.25006 + 1.58656I
15.3034 0.5963I 12.36984 + 0.02697I
u = 0.06382 1.54550I
a = 1.00000
b = 1.25006 1.58656I
15.3034 + 0.5963I 12.36984 0.02697I
u = 0.404295 + 0.009197I
a = 1.00000
b = 0.308660 1.174280I
2.44055 2.02483I 0.337255 + 1.060894I
u = 0.404295 0.009197I
a = 1.00000
b = 0.308660 + 1.174280I
2.44055 + 2.02483I 0.337255 1.060894I
u = 0.31241 + 1.60855I
a = 1.00000
b = 1.354220 0.086669I
8.31754 4.12811I 12.63192 + 2.04182I
u = 0.31241 1.60855I
a = 1.00000
b = 1.354220 + 0.086669I
8.31754 + 4.12811I 12.63192 2.04182I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.354088
a = 1.00000
b = 0.507588
0.805953 12.4890
u = 0.67274 + 1.79353I
a = 1.00000
b = 1.44292 1.29558I
14.4274 + 9.8229I 12.30738 3.83207I
u = 0.67274 1.79353I
a = 1.00000
b = 1.44292 + 1.29558I
14.4274 9.8229I 12.30738 + 3.83207I
6
II. I
u
2
= h2u
9
+ 7u
7
+ · · · + 2b + 2, a + 1, u
10
+ 4u
8
+ · · · + 2u 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
5
=
1
u
2
a
9
=
u
u
a
12
=
1
u
9
7
2
u
7
+ ··· + 4u 1
a
1
=
1
2
u
9
3
2
u
7
+ ··· + u 1
3
2
u
9
5u
7
+ ··· + 5u 1
a
3
=
u
9
7
2
u
7
+ ···
7
2
u
2
+ 4u
u
9
7
2
u
7
+ ··· +
5
2
u + 1
a
11
=
u
9
7
2
u
7
+ ··· + 4u 2
3
2
u
9
5u
7
+ ··· + 5u 1
a
7
=
1
2
u
8
+
1
2
u
7
+ ··· 2u + 2
1
2
u
9
1
2
u
8
+ ··· 2u +
3
2
a
2
=
u
9
1
2
u
8
+ ···
3
2
u
2
+
3
2
u
9
1
2
u
8
+ ···
1
2
u + 2
a
6
=
1
2
u
8
1
2
u
7
+ ··· + u
1
2
u
5
u
4
+ 4u
3
3u
2
+ 4u 2
a
10
=
1
2
u
9
+
1
2
u
8
+ ··· + 4u 1
1
2
u
9
+
1
2
u
8
+ ··· +
9
2
u
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
5
2
u
9
1
2
u
8
+
19
2
u
7
+
7
2
u
6
+ 9u
5
+
27
2
u
4
21
2
u
3
+ 12u
2
16u 10
7
(iv) u-Polynomials at the component
8
Crossings u-Polynomials at each crossing
c
1
u
10
12u
9
+ 38u
8
81u
7
+ 109u
6
102u
5
+ 62u
4
18u
3
u + 1
c
2
u
10
2u
9
4u
8
+ 3u
7
+ 5u
6
6u
5
4u
4
+ 4u
3
u + 1
c
3
u
10
+ 5u
9
+ ··· 15u 3
c
4
u
10
+ 4u
8
+ 2u
7
+ 5u
6
+ 6u
5
2u
4
+ 6u
3
6u
2
+ 2u 1
c
5
u
10
3u
9
10u
8
6u
7
8u
6
18u
5
+ 7u
3
+ 8u
2
+ 3u + 1
c
6
u
10
+ 2u
9
4u
8
3u
7
+ 5u
6
+ 6u
5
4u
4
4u
3
+ u + 1
c
7
u
10
+ 5u
9
+ 6u
8
5u
7
10u
6
+ 2u
5
6u
3
+ 6u
2
+ 3u 5
c
8
u
10
+ 4u
8
2u
7
+ 5u
6
6u
5
2u
4
6u
3
6u
2
2u 1
c
9
u
10
5u
9
+ 5u
8
+ u
7
9u
6
+ 6u
5
3u
4
7u
3
+ 3u
2
1
c
10
u
10
5u
9
+ 6u
8
+ 5u
7
10u
6
2u
5
+ 6u
3
+ 6u
2
3u 5
c
11
u
10
+ 3u
9
+ 6u
8
+ 6u
7
+ 4u
6
2u
5
5u
4
7u
3
+ 2u + 1
c
12
u
10
u
9
6u
8
+ 3u
7
+ 11u
6
9u
5
11u
4
+ 5u
3
+ 2u
2
3u 1
9
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
10
68y
9
+ ··· y + 1
c
2
, c
6
y
10
12y
9
+ 38y
8
81y
7
+ 109y
6
102y
5
+ 62y
4
18y
3
y + 1
c
3
y
10
+ 3y
9
+ 4y
8
+ 3y
7
+ 9y
6
+ 15y
5
+ 9y
4
y
3
+ 16y
2
57y + 9
c
4
, c
8
y
10
+ 8y
9
+ ··· + 8y + 1
c
5
y
10
29y
9
+ ··· + 7y + 1
c
7
, c
10
y
10
13y
9
+ ··· 69y + 25
c
9
y
10
15y
9
+ ··· 6y + 1
c
11
y
10
+ 3y
9
+ 8y
8
+ 14y
7
+ 22y
6
+ 30y
5
15y
4
33y
3
+ 18y
2
4y + 1
c
12
y
10
13y
9
+ ··· 13y + 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.009496 + 1.155230I
a = 1.00000
b = 0.572116 1.276800I
5.38125 + 0.86206I 11.68799 0.71640I
u = 0.009496 1.155230I
a = 1.00000
b = 0.572116 + 1.276800I
5.38125 0.86206I 11.68799 + 0.71640I
u = 1.28347
a = 1.00000
b = 0.970806
17.3343 8.37670
u = 0.335045 + 1.275960I
a = 1.00000
b = 1.122050 0.534600I
2.32585 2.89091I 9.34725 + 3.73381I
u = 0.335045 1.275960I
a = 1.00000
b = 1.122050 + 0.534600I
2.32585 + 2.89091I 9.34725 3.73381I
u = 0.612033
a = 1.00000
b = 0.407032
3.00050 14.5280
u = 0.116511 + 0.447058I
a = 1.00000
b = 0.261046 + 1.360630I
1.90106 + 2.27397I 12.92039 5.58214I
u = 0.116511 0.447058I
a = 1.00000
b = 0.261046 1.360630I
1.90106 2.27397I 12.92039 + 5.58214I
u = 0.54476 + 1.50703I
a = 1.00000
b = 0.826677 + 0.790310I
7.05562 + 6.53270I 11.09214 5.33385I
u = 0.54476 1.50703I
a = 1.00000
b = 0.826677 0.790310I
7.05562 6.53270I 11.09214 + 5.33385I
12
III. I
u
3
= hu
5
3u
4
+ 7u
3
16u
2
+ 9b + 8u 10, 19u
5
+ 39u
4
+ · · · + 9a +
226, u
6
2u
5
+ 4u
4
9u
3
+ u
2
11u 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
5
=
1
u
2
a
9
=
u
u
a
12
=
19
9
u
5
13
3
u
4
+ ··· +
35
9
u
226
9
1
9
u
5
+
1
3
u
4
+ ···
8
9
u +
10
9
a
1
=
7
3
u
5
5u
4
+ ··· +
11
3
u
76
3
1
9
u
5
1
3
u
4
+ ···
10
9
u +
8
9
a
3
=
25
9
u
5
+ 6u
4
+ ···
56
9
u +
280
9
2
9
u
5
1
3
u
4
+ ···
11
9
u
14
9
a
11
=
19
9
u
5
13
3
u
4
+ ··· +
35
9
u
217
9
1
9
u
5
+
1
3
u
4
+ ···
8
9
u +
10
9
a
7
=
43
9
u
5
10u
4
+ ··· +
83
9
u
478
9
2
9
u
5
+
1
3
u
4
+ ··· +
2
9
u +
23
9
a
2
=
43
3
u
5
+
91
3
u
4
+ ···
83
3
u + 161
8
9
u
5
5
3
u
4
+ ···
26
9
u
71
9
a
6
=
30.7778u
5
+ 63.6667u
4
+ ··· 57.2222u + 340.444
2u
5
11
3
u
4
+ ··· + 9u
46
3
a
10
=
8.44444u
5
+ 17.6667u
4
+ ··· 15.5556u + 93.1111
4
9
u
5
1
3
u
4
+ ···
4
9
u
40
9
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1
9
u
5
+
5
9
u
3
8
9
u
2
+
19
9
u
149
9
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
6
+ 23u
5
+ 149u
4
+ 597u
3
+ 2195u
2
+ 1982u + 529
c
2
, c
6
u
6
+ 3u
5
7u
4
19u
3
7u
2
+ 48u 23
c
3
(u
3
+ u
2
u 2)
2
c
4
, c
8
u
6
2u
5
+ 4u
4
9u
3
+ u
2
11u 1
c
5
u
6
+ 6u
5
36u
4
47u
3
+ 329u
2
331u + 101
c
7
, c
10
(u
3
2u
2
1)
2
c
9
u
6
5u
5
9u
4
+ 42u
3
53u
2
165u 83
c
11
(u 1)
6
c
12
u
6
8u
4
+ 3u
3
+ 9u
2
u 17
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
6
231y
5
+ ··· 1606014y + 279841
c
2
, c
6
y
6
23y
5
+ 149y
4
597y
3
+ 2195y
2
1982y + 529
c
3
(y
3
3y
2
+ 5y 4)
2
c
4
, c
8
y
6
+ 4y
5
18y
4
119y
3
205y
2
123y + 1
c
5
y
6
108y
5
+ 2518y
4
21723y
3
+ 69855y
2
43103y + 10201
c
7
, c
10
(y
3
4y
2
4y 1)
2
c
9
y
6
43y
5
+ 395y
4
2626y
3
+ 18163y
2
18427y + 6889
c
11
(y 1)
6
c
12
y
6
16y
5
+ 82y
4
187y
3
+ 359y
2
307y + 289
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.261577 + 1.168950I
a = 1.52339 + 0.20505I
b = 1.102790 0.665457I
3.89790 2.56897I 15.1239 + 2.1332I
u = 0.261577 1.168950I
a = 1.52339 0.20505I
b = 1.102790 + 0.665457I
3.89790 + 2.56897I 15.1239 2.1332I
u = 0.15879 + 1.83440I
a = 0.644748 + 0.086783I
b = 1.102790 + 0.665457I
3.89790 + 2.56897I 15.1239 2.1332I
u = 0.15879 1.83440I
a = 0.644748 0.086783I
b = 1.102790 0.665457I
3.89790 2.56897I 15.1239 + 2.1332I
u = 0.0895674
a = 25.6247
b = 1.20557
18.5231 16.7520
u = 2.29514
a = 0.0390249
b = 1.20557
18.5231 16.7520
16
IV. I
u
4
= hb, a u, u
2
u + 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
5
=
1
u + 1
a
9
=
u
u
a
12
=
u
0
a
1
=
u 1
1
a
3
=
1
0
a
11
=
u 1
u 1
a
7
=
u + 1
1
a
2
=
u
1
a
6
=
1
0
a
10
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 15
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
11
(u 1)
2
c
3
u
2
c
4
, c
5
u
2
u + 1
c
6
, c
10
(u + 1)
2
c
8
, c
9
, c
12
u
2
+ u + 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
10
, c
11
(y 1)
2
c
3
y
2
c
4
, c
5
, c
8
c
9
, c
12
y
2
+ y + 1
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 + 0.866025I
b = 0
3.28987 15.0000
u = 0.500000 0.866025I
a = 0.500000 0.866025I
b = 0
3.28987 15.0000
20
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
2
(u
6
+ 23u
5
+ 149u
4
+ 597u
3
+ 2195u
2
+ 1982u + 529)
· (u
10
12u
9
+ 38u
8
81u
7
+ 109u
6
102u
5
+ 62u
4
18u
3
u + 1)
· (u
13
+ 32u
12
+ ··· + 33u + 1)
c
2
(u 1)
2
(u
6
+ 3u
5
7u
4
19u
3
7u
2
+ 48u 23)
· (u
10
2u
9
4u
8
+ 3u
7
+ 5u
6
6u
5
4u
4
+ 4u
3
u + 1)
· (u
13
2u
12
+ ··· 5u + 1)
c
3
u
2
(u
3
+ u
2
u 2)
2
(u
10
+ 5u
9
+ ··· 15u 3)
· (u
13
8u
12
+ ··· 9u + 2)
c
4
(u
2
u + 1)(u
6
2u
5
+ 4u
4
9u
3
+ u
2
11u 1)
· (u
10
+ 4u
8
+ 2u
7
+ 5u
6
+ 6u
5
2u
4
+ 6u
3
6u
2
+ 2u 1)
· (u
13
+ 8u
11
+ ··· 10u
2
+ 1)
c
5
(u
2
u + 1)(u
6
+ 6u
5
36u
4
47u
3
+ 329u
2
331u + 101)
· (u
10
3u
9
10u
8
6u
7
8u
6
18u
5
+ 7u
3
+ 8u
2
+ 3u + 1)
· (u
13
25u
12
+ ··· + 9173u + 2591)
c
6
(u + 1)
2
(u
6
+ 3u
5
7u
4
19u
3
7u
2
+ 48u 23)
· (u
10
+ 2u
9
4u
8
3u
7
+ 5u
6
+ 6u
5
4u
4
4u
3
+ u + 1)
· (u
13
2u
12
+ ··· 5u + 1)
c
7
(u 1)
2
(u
3
2u
2
1)
2
· (u
10
+ 5u
9
+ 6u
8
5u
7
10u
6
+ 2u
5
6u
3
+ 6u
2
+ 3u 5)
· (u
13
+ 8u
12
+ ··· + 27u + 4)
c
8
(u
2
+ u + 1)(u
6
2u
5
+ 4u
4
9u
3
+ u
2
11u 1)
· (u
10
+ 4u
8
2u
7
+ 5u
6
6u
5
2u
4
6u
3
6u
2
2u 1)
· (u
13
+ 8u
11
+ ··· 10u
2
+ 1)
c
9
(u
2
+ u + 1)(u
6
5u
5
9u
4
+ 42u
3
53u
2
165u 83)
· (u
10
5u
9
+ 5u
8
+ u
7
9u
6
+ 6u
5
3u
4
7u
3
+ 3u
2
1)
· (u
13
18u
11
+ ··· + 738u + 244)
c
10
(u + 1)
2
(u
3
2u
2
1)
2
· (u
10
5u
9
+ 6u
8
+ 5u
7
10u
6
2u
5
+ 6u
3
+ 6u
2
3u 5)
· (u
13
+ 8u
12
+ ··· + 27u + 4)
c
11
(u 1)
8
(u
10
+ 3u
9
+ 6u
8
+ 6u
7
+ 4u
6
2u
5
5u
4
7u
3
+ 2u + 1)
· (u
13
+ 8u
12
+ ··· + 20u + 4)
c
12
(u
2
+ u + 1)(u
6
8u
4
+ 3u
3
+ 9u
2
u 17)
· (u
10
u
9
6u
8
+ 3u
7
+ 11u
6
9u
5
11u
4
+ 5u
3
+ 2u
2
3u 1)
· (u
13
+ u
12
+ ··· + u + 1)
21
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
2
)(y
6
231y
5
+ ··· 1606014y + 279841)
· (y
10
68y
9
+ ··· y + 1)(y
13
308y
12
+ ··· + 249y 1)
c
2
, c
6
(y 1)
2
(y
6
23y
5
+ 149y
4
597y
3
+ 2195y
2
1982y + 529)
· (y
10
12y
9
+ 38y
8
81y
7
+ 109y
6
102y
5
+ 62y
4
18y
3
y + 1)
· (y
13
32y
12
+ ··· + 33y 1)
c
3
y
2
(y
3
3y
2
+ 5y 4)
2
· (y
10
+ 3y
9
+ 4y
8
+ 3y
7
+ 9y
6
+ 15y
5
+ 9y
4
y
3
+ 16y
2
57y + 9)
· (y
13
+ 24y
11
+ ··· + 25y 4)
c
4
, c
8
(y
2
+ y + 1)(y
6
+ 4y
5
18y
4
119y
3
205y
2
123y + 1)
· (y
10
+ 8y
9
+ ··· + 8y + 1)(y
13
+ 16y
12
+ ··· + 20y 1)
c
5
(y
2
+ y + 1)
· (y
6
108y
5
+ 2518y
4
21723y
3
+ 69855y
2
43103y + 10201)
· (y
10
29y
9
+ ··· + 7y + 1)
· (y
13
137y
12
+ ··· + 11823937y 6713281)
c
7
, c
10
((y 1)
2
)(y
3
4y
2
4y 1)
2
(y
10
13y
9
+ ··· 69y + 25)
· (y
13
28y
12
+ ··· + 345y 16)
c
9
(y
2
+ y + 1)(y
6
43y
5
+ ··· 18427y + 6889)
· (y
10
15y
9
+ ··· 6y + 1)(y
13
36y
12
+ ··· 302036y 59536)
c
11
(y 1)
8
· (y
10
+ 3y
9
+ 8y
8
+ 14y
7
+ 22y
6
+ 30y
5
15y
4
33y
3
+ 18y
2
4y + 1)
· (y
13
+ 2y
12
+ ··· + 120y 16)
c
12
(y
2
+ y + 1)(y
6
16y
5
+ 82y
4
187y
3
+ 359y
2
307y + 289)
· (y
10
13y
9
+ ··· 13y + 1)(y
13
25y
12
+ ··· 7y 1)
22