12n
0605
(K12n
0605
)
A knot diagram
1
Linearized knot diagam
3 7 10 8 9 2 12 5 3 4 1 8
Solving Sequence
2,6
7
3,9
10 1 5 8 4 12 11
c
6
c
2
c
9
c
1
c
5
c
8
c
4
c
12
c
11
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
7
3u
6
u
5
+ 9u
4
6u
3
2u
2
+ 4b + 2, u
7
2u
6
u
5
+ 6u
4
6u
3
+ 2u
2
+ 4a + 2u,
u
8
2u
7
2u
6
+ 8u
5
3u
4
4u
3
+ 2u
2
+ 2u + 2i
I
u
2
= hb 1, u
2
+ 2a u, u
4
u
2
+ 2i
I
u
3
= h−63u
7
+ 285u
6
207u
5
+ 132u
4
665u
3
273u
2
+ 1121b + 1277u 919,
6601u
7
21641u
6
+ 23931u
5
33635u
4
+ 55727u
3
+ 23373u
2
+ 24662a 106399u + 92305,
u
8
4u
7
+ 6u
6
8u
5
+ 12u
4
2u
3
18u
2
+ 26u 11i
I
u
4
= hau + b a + 1, 2a
2
2au 4a u 1, u
2
+ 2u 1i
I
u
5
= hb 2a + 1, 2a
2
2a 1, u + 1i
I
u
6
= hb + 1, u
3
u
2
+ 2a + u 1, u
4
+ 1i
I
u
7
= hb, a + 1, u + 1i
I
u
8
= h−2au + 2b + 2a + u 3, 4a
2
4a + 9, u
2
2u + 1i
I
u
9
= hb 1, u 1i
I
v
1
= ha, b + 1, v + 1i
* 9 irreducible components of dim
C
= 0, with total 36 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
7
3u
6
u
5
+ 9u
4
6u
3
2u
2
+ 4b + 2, u
7
2u
6
u
5
+ 6u
4
6u
3
+ 2u
2
+ 4a + 2u, u
8
2u
7
+ · · · + 2u + 2i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
9
=
1
4
u
7
+
1
2
u
6
+ ···
1
2
u
2
1
2
u
1
4
u
7
+
3
4
u
6
+ ··· +
1
2
u
2
1
2
a
10
=
1
2
u
7
+
3
4
u
6
+ ···
1
2
u
1
2
3
4
u
7
+
5
4
u
6
+ ··· + u +
1
2
a
1
=
u
3
u
5
u
3
+ u
a
5
=
1
4
u
7
1
2
u
6
+ ···
1
2
u + 1
1
4
u
7
3
4
u
6
+ ··· +
1
2
u
2
+
1
2
a
8
=
1
2
u
7
u
6
1
2
u
5
+ 3u
4
2u
3
u + 1
1
2
u
7
u
6
1
2
u
5
+ 2u
4
2u
3
+ u
2
u
a
4
=
1
2
u
7
+
3
4
u
6
+ ···
1
2
u
1
2
3
4
u
7
+
1
4
u
6
+ ··· + 2u +
1
2
a
12
=
1
2
u
6
u
5
1
2
u
4
+ 3u
3
2u
2
1
1
2
u
6
u
5
1
2
u
4
+ 2u
3
2u
2
1
a
11
=
1
2
u
6
2u
5
1
2
u
4
+ 3u
3
2u
2
1
u
7
+
1
2
u
6
1
2
u
4
+ u
3
2u
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1
2
u
7
1
2
u
6
1
2
u
5
1
2
u
4
+ u
3
+ 9u
2
8u + 1
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
8
+ 8u
7
+ 30u
6
+ 64u
5
+ 77u
4
+ 68u
3
+ 8u
2
4u + 4
c
2
, c
6
, c
7
c
12
u
8
2u
7
2u
6
+ 8u
5
3u
4
4u
3
+ 2u
2
+ 2u + 2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
8
2u
7
5u
6
+ 16u
5
3u
4
14u
3
+ u
2
2
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
8
4y
7
+ 30y
6
548y
5
2223y
4
2640y
3
+ 1224y
2
+ 48y + 16
c
2
, c
6
, c
7
c
12
y
8
8y
7
+ 30y
6
64y
5
+ 77y
4
68y
3
+ 8y
2
+ 4y + 4
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
8
14y
7
+ 83y
6
280y
5
+ 443y
4
182y
3
+ 13y
2
4y + 4
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.795087
a = 1.17483
b = 1.67677
10.6824 12.2800
u = 0.973229 + 0.738508I
a = 0.555279 0.483622I
b = 0.655349 0.111756I
2.80118 5.76470I 0.66223 + 7.42338I
u = 0.973229 0.738508I
a = 0.555279 + 0.483622I
b = 0.655349 + 0.111756I
2.80118 + 5.76470I 0.66223 7.42338I
u = 0.253073 + 0.513412I
a = 0.548752 0.359255I
b = 0.248429 0.443565I
0.076761 + 1.027570I 1.43267 6.49756I
u = 0.253073 0.513412I
a = 0.548752 + 0.359255I
b = 0.248429 + 0.443565I
0.076761 1.027570I 1.43267 + 6.49756I
u = 1.55774 + 0.70350I
a = 0.340083 + 1.296596I
b = 1.80248 + 0.99093I
13.5641 12.7719I 1.06054 + 5.06853I
u = 1.55774 0.70350I
a = 0.340083 1.296596I
b = 1.80248 0.99093I
13.5641 + 12.7719I 1.06054 5.06853I
u = 1.76070
a = 0.507716
b = 2.46790
7.40006 0.0581740
5
II. I
u
2
= hb 1, u
2
+ 2a u, u
4
u
2
+ 2i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
9
=
1
2
u
2
+
1
2
u
1
a
10
=
1
2
u
2
+
3
2
u
u
3
u + 1
a
1
=
u
3
u
a
5
=
1
2
u
2
+
1
2
u + 1
1
a
8
=
1
0
a
4
=
1
2
u
2
+
1
2
u
1
a
12
=
u
3
u
u
a
11
=
u
u
3
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
+ 4
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
(u
2
u + 2)
2
c
2
, c
6
, c
7
c
12
u
4
u
2
+ 2
c
3
, c
8
(u + 1)
4
c
4
, c
5
, c
9
c
10
(u 1)
4
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
(y
2
+ 3y + 4)
2
c
2
, c
6
, c
7
c
12
(y
2
y + 2)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y 1)
4
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.978318 + 0.676097I
a = 0.239159 0.323389I
b = 1.00000
4.11234 5.33349I 6.00000 + 5.29150I
u = 0.978318 0.676097I
a = 0.239159 + 0.323389I
b = 1.00000
4.11234 + 5.33349I 6.00000 5.29150I
u = 0.978318 + 0.676097I
a = 0.739159 + 0.999486I
b = 1.00000
4.11234 + 5.33349I 6.00000 5.29150I
u = 0.978318 0.676097I
a = 0.739159 0.999486I
b = 1.00000
4.11234 5.33349I 6.00000 + 5.29150I
9
III. I
u
3
= h−63u
7
+ 285u
6
+ · · · + 1121b 919, 6601u
7
21641u
6
+ · · · +
24662a + 92305, u
8
4u
7
+ · · · + 26u 11i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
9
=
0.267659u
7
+ 0.877504u
6
+ ··· + 4.31429u 3.74280
0.0561998u
7
0.254237u
6
+ ··· 1.13916u + 0.819804
a
10
=
0.238221u
7
+ 1.03005u
6
+ ··· + 4.95568u 4.36100
0.599465u
7
1.71186u
6
+ ··· 8.48439u + 4.41124
a
1
=
u
3
u
5
u
3
+ u
a
5
=
0.0185305u
7
0.0362096u
6
+ ··· 0.502595u + 0.792677
0.0374665u
7
0.169492u
6
+ ··· 0.0927743u + 0.213202
a
8
=
0.407591u
7
+ 1.17720u
6
+ ··· + 6.03958u 4.71332
0.312221u
7
+ 0.745763u
6
+ ··· + 3.43979u 1.44335
a
4
=
0.0381559u
7
0.0654854u
6
+ ··· 1.25833u + 0.619455
0.399643u
7
+ 0.474576u
6
+ ··· + 6.32293u 2.60749
a
12
=
0.321953u
7
1.07550u
6
+ ··· 4.54181u + 4.51172
0.00892061u
7
+ 0.135593u
6
+ ··· + 0.926851u + 0.187333
a
11
=
0.181169u
7
0.228043u
6
+ ··· + 1.13259u + 1.07728
1.87957u
7
+ 6.16949u
6
+ ··· + 21.9875u 11.5290
(ii) Obstruction class = 1
(iii) Cusp Shapes =
518
1121
u
7
84
59
u
6
+
1702
1121
u
5
2580
1121
u
4
+
196
59
u
3
+
2992
1121
u
2
8756
1121
u +
9300
1121
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
8
+ 4u
7
4u
6
28u
5
+ 82u
4
+ 152u
3
+ 164u
2
+ 280u + 121
c
2
, c
6
, c
7
c
12
u
8
4u
7
+ 6u
6
8u
5
+ 12u
4
2u
3
18u
2
+ 26u 11
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(u
4
+ 2u
3
+ 4u
2
2u 1)
2
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
8
24y
7
+ ··· 38712y + 14641
c
2
, c
6
, c
7
c
12
y
8
4y
7
4y
6
+ 28y
5
+ 82y
4
152y
3
+ 164y
2
280y + 121
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y
4
+ 4y
3
+ 22y
2
12y + 1)
2
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.737313 + 0.794288I
a = 0.634238 + 0.289969I
b = 0.632293
3.51425 61.050747 + 0.10I
u = 0.737313 0.794288I
a = 0.634238 0.289969I
b = 0.632293
3.51425 61.050747 + 0.10I
u = 1.13723
a = 0.132208
b = 0.321336
2.70122 4.79070
u = 0.741896
a = 1.67811
b = 0.321336
2.70122 4.79070
u = 0.47349 + 1.60637I
a = 0.607711 + 0.003620I
b = 1.15548 + 1.89385I
7.80872 + 4.85117I 1.07929 2.27864I
u = 0.47349 1.60637I
a = 0.607711 0.003620I
b = 1.15548 1.89385I
7.80872 4.85117I 1.07929 + 2.27864I
u = 1.93385 + 0.46705I
a = 0.162665 1.055547I
b = 1.15548 1.89385I
7.80872 4.85117I 1.07929 + 2.27864I
u = 1.93385 0.46705I
a = 0.162665 + 1.055547I
b = 1.15548 + 1.89385I
7.80872 + 4.85117I 1.07929 2.27864I
13
IV. I
u
4
= hau + b a + 1, 2a
2
2au 4a u 1, u
2
+ 2u 1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
2u + 1
a
3
=
u
4u + 2
a
9
=
a
au + a 1
a
10
=
3au + 2u 1
13au 5a + 10u 5
a
1
=
5u 2
25u 10
a
5
=
au + u + 1
4au 2a + 3u
a
8
=
3u
13u 5
a
4
=
10au 3a 2u + 1
48au 20a 10u + 5
a
12
=
u + 1
6u + 3
a
11
=
30u + 13
151u + 63
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
(u
2
+ 6u + 1)
2
c
2
, c
6
, c
7
c
12
(u
2
+ 2u 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
4
4u
3
+ 12u
2
4u 7
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
(y
2
34y + 1)
2
c
2
, c
6
, c
7
c
12
(y
2
6y + 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
4
+ 8y
3
+ 98y
2
184y + 49
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.414214
a = 0.264020
b = 1.15466
2.46740 0
u = 0.414214
a = 2.67823
b = 0.568873
2.46740 0
u = 2.41421
a = 0.207107 + 0.814993I
b = 1.70711 + 2.78256I
17.2718 0
u = 2.41421
a = 0.207107 0.814993I
b = 1.70711 2.78256I
17.2718 0
17
V. I
u
5
= hb 2a + 1, 2a
2
2a 1, u + 1i
(i) Arc colorings
a
2
=
0
1
a
6
=
1
0
a
7
=
1
1
a
3
=
1
0
a
9
=
a
2a 1
a
10
=
3a 1
2a 1
a
1
=
1
1
a
5
=
a + 2
3
a
8
=
4a + 1
4a + 2
a
4
=
a 3
3
a
12
=
4a
4a + 1
a
11
=
4a + 1
4a + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
11
(u 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
2
3
c
6
, c
12
(u + 1)
2
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
(y 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y 3)
2
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.36603
b = 1.73205
9.86960 0
u = 1.00000
a = 0.366025
b = 1.73205
9.86960 0
21
VI. I
u
6
= hb + 1, u
3
u
2
+ 2a + u 1, u
4
+ 1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
9
=
1
2
u
3
+
1
2
u
2
1
2
u +
1
2
1
a
10
=
1
2
u
3
+
1
2
u
2
3
2
u +
1
2
u
3
+ u 1
a
1
=
u
3
u
3
a
5
=
1
2
u
3
1
2
u
2
+
1
2
u +
1
2
1
a
8
=
1
0
a
4
=
1
2
u
3
1
2
u
2
+
1
2
u
1
2
1
a
12
=
0
u
3
a
11
=
u
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
(u
2
+ 1)
2
c
2
, c
6
, c
7
c
12
u
4
+ 1
c
3
, c
8
(u 1)
4
c
4
, c
5
, c
9
c
10
(u + 1)
4
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
(y + 1)
4
c
2
, c
6
, c
7
c
12
(y
2
+ 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y 1)
4
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.707107 + 0.707107I
a = 0.207107 + 0.500000I
b = 1.00000
4.93480 8.00000
u = 0.707107 0.707107I
a = 0.207107 0.500000I
b = 1.00000
4.93480 8.00000
u = 0.707107 + 0.707107I
a = 1.207107 0.500000I
b = 1.00000
4.93480 8.00000
u = 0.707107 0.707107I
a = 1.207107 + 0.500000I
b = 1.00000
4.93480 8.00000
25
VII. I
u
7
= hb, a + 1, u + 1i
(i) Arc colorings
a
2
=
0
1
a
6
=
1
0
a
7
=
1
1
a
3
=
1
0
a
9
=
1
0
a
10
=
1
0
a
1
=
1
1
a
5
=
1
0
a
8
=
1
0
a
4
=
1
0
a
12
=
2
1
a
11
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
11
u 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
c
6
, c
12
u + 1
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
y 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
3.28987 12.0000
29
VIII. I
u
8
= h−2au + 2b + 2a + u 3, 4a
2
4a + 9, u
2
2u + 1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
2u 1
a
3
=
u
2u + 2
a
9
=
a
au a
1
2
u +
3
2
a
10
=
au + 2a +
3
2
u
1
2
au a +
3
2
u
1
2
a
1
=
3u 2
3u 2
a
5
=
1
2
au +
1
2
a
9
4
u +
13
4
2au 2a u + 2
a
8
=
2au + 2a + 5u 6
2au + 2a + u 1
a
4
=
5
2
au +
7
2
a +
13
4
u
13
4
1
a
12
=
2au 2a 3u + 5
2au 2a + 2u 1
a
11
=
2au 2a 4u + 5
2au 2a + u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
30
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
6
, c
9
, c
10
c
11
, c
12
(u 1)
4
c
2
, c
3
, c
7
c
8
(u + 1)
4
31
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
(y 1)
4
32
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.50000 + 1.41421I
b = 1.00000
0 0
u = 1.00000
a = 0.50000 + 1.41421I
b = 1.00000
0 0
u = 1.00000
a = 0.50000 1.41421I
b = 1.00000
0 0
u = 1.00000
a = 0.50000 1.41421I
b = 1.00000
0 0
33
IX. I
u
9
= hb 1, u 1i
(i) Arc colorings
a
2
=
0
1
a
6
=
1
0
a
7
=
1
1
a
3
=
1
0
a
9
=
a
1
a
10
=
a + 1
1
a
1
=
1
1
a
5
=
a + 1
1
a
8
=
1
0
a
4
=
a
1
a
12
=
2
1
a
11
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
34
(iv) Complex Volumes and Cusp Shapes
Solution to I
u
9
1(vol +
1CS) Cusp shape
u = ···
a = ···
b = ···
0 0
35
X. I
v
1
= ha, b + 1, v + 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
1
0
a
7
=
1
0
a
3
=
1
0
a
9
=
0
1
a
10
=
1
1
a
1
=
1
0
a
5
=
1
1
a
8
=
1
0
a
4
=
0
1
a
12
=
1
0
a
11
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
36
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
u
c
3
, c
8
u 1
c
4
, c
5
, c
9
c
10
u + 1
37
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
y
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y 1
38
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
39
XI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
11
u(u 1)
7
(u
2
+ 1)
2
(u
2
u + 2)
2
(u
2
+ 6u + 1)
2
· (u
8
+ 4u
7
4u
6
28u
5
+ 82u
4
+ 152u
3
+ 164u
2
+ 280u + 121)
· (u
8
+ 8u
7
+ 30u
6
+ 64u
5
+ 77u
4
+ 68u
3
+ 8u
2
4u + 4)
c
2
, c
7
u(u 1)
3
(u + 1)
4
(u
2
+ 2u 1)
2
(u
4
+ 1)(u
4
u
2
+ 2)
· (u
8
4u
7
+ 6u
6
8u
5
+ 12u
4
2u
3
18u
2
+ 26u 11)
· (u
8
2u
7
2u
6
+ 8u
5
3u
4
4u
3
+ 2u
2
+ 2u + 2)
c
3
, c
8
u(u 1)
5
(u + 1)
8
(u
2
3)(u
4
4u
3
+ 12u
2
4u 7)
· (u
4
+ 2u
3
+ 4u
2
2u 1)
2
· (u
8
2u
7
5u
6
+ 16u
5
3u
4
14u
3
+ u
2
2)
c
4
, c
5
, c
9
c
10
u(u 1)
8
(u + 1)
5
(u
2
3)(u
4
4u
3
+ 12u
2
4u 7)
· (u
4
+ 2u
3
+ 4u
2
2u 1)
2
· (u
8
2u
7
5u
6
+ 16u
5
3u
4
14u
3
+ u
2
2)
c
6
, c
12
u(u 1)
4
(u + 1)
3
(u
2
+ 2u 1)
2
(u
4
+ 1)(u
4
u
2
+ 2)
· (u
8
4u
7
+ 6u
6
8u
5
+ 12u
4
2u
3
18u
2
+ 26u 11)
· (u
8
2u
7
2u
6
+ 8u
5
3u
4
4u
3
+ 2u
2
+ 2u + 2)
40
XII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
11
y(y 1)
7
(y + 1)
4
(y
2
34y + 1)
2
(y
2
+ 3y + 4)
2
· (y
8
24y
7
+ ··· 38712y + 14641)
· (y
8
4y
7
+ 30y
6
548y
5
2223y
4
2640y
3
+ 1224y
2
+ 48y + 16)
c
2
, c
6
, c
7
c
12
y(y 1)
7
(y
2
+ 1)
2
(y
2
6y + 1)
2
(y
2
y + 2)
2
· (y
8
8y
7
+ 30y
6
64y
5
+ 77y
4
68y
3
+ 8y
2
+ 4y + 4)
· (y
8
4y
7
4y
6
+ 28y
5
+ 82y
4
152y
3
+ 164y
2
280y + 121)
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y(y 3)
2
(y 1)
13
(y
4
+ 4y
3
+ 22y
2
12y + 1)
2
· (y
4
+ 8y
3
+ 98y
2
184y + 49)
· (y
8
14y
7
+ 83y
6
280y
5
+ 443y
4
182y
3
+ 13y
2
4y + 4)
41