12n
0607
(K12n
0607
)
A knot diagram
1
Linearized knot diagam
3 7 12 8 9 2 11 5 3 7 4 10
Solving Sequence
4,8
5
9,11
12 3 7 2 1 6 10
c
4
c
8
c
11
c
3
c
7
c
2
c
1
c
6
c
10
c
5
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−3.98483 × 10
51
u
43
7.92706 × 10
51
u
42
+ ··· + 1.21780 × 10
52
b + 9.50729 × 10
52
,
6.39484 × 10
51
u
43
5.55868 × 10
51
u
42
+ ··· + 3.53162 × 10
53
a + 2.88768 × 10
53
,
u
44
+ 3u
43
+ ··· 36u 29i
I
u
2
= hu
13
u
12
7u
11
+ 7u
10
+ 18u
9
18u
8
20u
7
+ 18u
6
+ 10u
5
2u
4
5u
3
4u
2
+ b + 2u + 1,
u
14
+ 2u
13
+ 7u
12
16u
11
17u
10
+ 50u
9
+ 13u
8
74u
7
+ 6u
6
+ 50u
5
6u
4
12u
3
6u
2
+ a + 5,
u
15
2u
14
7u
13
+ 16u
12
+ 17u
11
50u
10
13u
9
+ 74u
8
6u
7
50u
6
+ 6u
5
+ 12u
4
+ 6u
3
+ u
2
5u 1i
* 2 irreducible components of dim
C
= 0, with total 59 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−3.98 × 10
51
u
43
7.93 × 10
51
u
42
+ · · · + 1.22 × 10
52
b + 9.51 ×
10
52
, 6.39 × 10
51
u
43
5.56 × 10
51
u
42
+ · · · + 3.53 × 10
53
a + 2.89 ×
10
53
, u
44
+ 3u
43
+ · · · 36u 29i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
5
=
1
u
2
a
9
=
u
u
3
+ u
a
11
=
0.0181074u
43
+ 0.0157397u
42
+ ··· 7.01705u 0.817663
0.327216u
43
+ 0.650933u
42
+ ··· 4.17363u 7.80693
a
12
=
0.309108u
43
0.635193u
42
+ ··· 2.84342u + 6.98927
0.327216u
43
+ 0.650933u
42
+ ··· 4.17363u 7.80693
a
3
=
0.518338u
43
+ 1.03102u
42
+ ··· 15.2327u 13.7592
0.303941u
43
0.580963u
42
+ ··· + 5.51276u + 8.99431
a
7
=
0.549754u
43
+ 1.13751u
42
+ ··· 14.1047u 14.7839
0.193131u
43
0.327791u
42
+ ··· + 2.95340u + 6.21753
a
2
=
0.232795u
43
+ 0.476323u
42
+ ··· + 3.84795u 8.66991
0.371791u
43
0.806245u
42
+ ··· + 1.40362u + 10.8222
a
1
=
0.350328u
43
0.903767u
42
+ ··· + 29.3966u + 10.2617
0.431119u
43
0.755303u
42
+ ··· 1.45502u + 5.30649
a
6
=
u
2
+ 1
u
4
2u
2
a
10
=
0.00534609u
43
0.0637310u
42
+ ··· 3.23886u 5.04605
0.0972752u
43
0.0928284u
42
+ ··· 4.57450u + 2.98741
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.277792u
43
0.610725u
42
+ ··· + 9.19368u + 15.3613
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
44
+ 54u
43
+ ··· + 157u + 1
c
2
, c
6
u
44
2u
43
+ ··· + 3u 1
c
3
, c
11
u
44
3u
43
+ ··· 25u + 1
c
4
, c
5
, c
8
u
44
3u
43
+ ··· + 36u 29
c
7
, c
10
u
44
4u
43
+ ··· + 2004u 563
c
9
u
44
2u
43
+ ··· + 2091u 389
c
12
u
44
+ u
43
+ ··· + 1354u 1081
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
44
114y
43
+ ··· 6565y + 1
c
2
, c
6
y
44
54y
43
+ ··· 157y + 1
c
3
, c
11
y
44
+ 43y
43
+ ··· 415y + 1
c
4
, c
5
, c
8
y
44
43y
43
+ ··· + 154y + 841
c
7
, c
10
y
44
26y
43
+ ··· 2861866y + 316969
c
9
y
44
+ 54y
43
+ ··· + 12410735y + 151321
c
12
y
44
+ 49y
43
+ ··· + 24190678y + 1168561
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.232314 + 0.891394I
a = 1.182840 + 0.641241I
b = 0.785573 + 0.181213I
9.31236 + 3.20269I 1.63968 3.08905I
u = 0.232314 0.891394I
a = 1.182840 0.641241I
b = 0.785573 0.181213I
9.31236 3.20269I 1.63968 + 3.08905I
u = 0.421682 + 0.772572I
a = 0.86640 1.32108I
b = 0.027933 1.313490I
4.97162 + 0.16549I 5.68850 + 0.34807I
u = 0.421682 0.772572I
a = 0.86640 + 1.32108I
b = 0.027933 + 1.313490I
4.97162 0.16549I 5.68850 0.34807I
u = 0.837269 + 0.017279I
a = 0.688236 0.510031I
b = 0.052866 + 0.391971I
1.359070 + 0.099848I 6.44713 + 0.44768I
u = 0.837269 0.017279I
a = 0.688236 + 0.510031I
b = 0.052866 0.391971I
1.359070 0.099848I 6.44713 0.44768I
u = 1.16381
a = 1.26734
b = 0.816752
2.85076 2.72130
u = 1.187230 + 0.325824I
a = 1.367400 + 0.224408I
b = 0.332131 + 1.373840I
7.30043 4.16721I 6.35771 + 3.21063I
u = 1.187230 0.325824I
a = 1.367400 0.224408I
b = 0.332131 1.373840I
7.30043 + 4.16721I 6.35771 3.21063I
u = 1.229270 + 0.131786I
a = 0.802568 + 0.161525I
b = 0.892070 0.665689I
2.18790 + 3.06008I 7.00945 4.71003I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.229270 0.131786I
a = 0.802568 0.161525I
b = 0.892070 + 0.665689I
2.18790 3.06008I 7.00945 + 4.71003I
u = 0.132670 + 0.748244I
a = 0.413490 + 1.238040I
b = 0.14531 + 1.46229I
4.65271 3.21249I 2.19622 + 5.43824I
u = 0.132670 0.748244I
a = 0.413490 1.238040I
b = 0.14531 1.46229I
4.65271 + 3.21249I 2.19622 5.43824I
u = 0.413623 + 1.194950I
a = 0.734599 + 0.755593I
b = 0.29763 + 1.39048I
4.29060 + 7.07615I 2.00000 4.71324I
u = 0.413623 1.194950I
a = 0.734599 0.755593I
b = 0.29763 1.39048I
4.29060 7.07615I 2.00000 + 4.71324I
u = 1.150740 + 0.556416I
a = 0.032760 0.925047I
b = 0.328510 0.006839I
6.59118 + 1.93121I 0
u = 1.150740 0.556416I
a = 0.032760 + 0.925047I
b = 0.328510 + 0.006839I
6.59118 1.93121I 0
u = 1.303890 + 0.194858I
a = 0.855836 + 0.581357I
b = 0.03406 1.56374I
8.41843 0.01026I 0
u = 1.303890 0.194858I
a = 0.855836 0.581357I
b = 0.03406 + 1.56374I
8.41843 + 0.01026I 0
u = 1.355820 + 0.181971I
a = 0.18635 1.43687I
b = 0.110848 + 1.367110I
2.05757 + 3.46602I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.355820 0.181971I
a = 0.18635 + 1.43687I
b = 0.110848 1.367110I
2.05757 3.46602I 0
u = 1.363940 + 0.224481I
a = 0.752199 0.014028I
b = 0.777456 + 1.110380I
1.75499 1.31745I 0
u = 1.363940 0.224481I
a = 0.752199 + 0.014028I
b = 0.777456 1.110380I
1.75499 + 1.31745I 0
u = 1.41075 + 0.33605I
a = 1.010620 + 0.344192I
b = 0.26866 1.59656I
9.67423 + 7.25773I 0
u = 1.41075 0.33605I
a = 1.010620 0.344192I
b = 0.26866 + 1.59656I
9.67423 7.25773I 0
u = 0.532070 + 0.131930I
a = 0.546352 + 0.863213I
b = 0.339438 0.970682I
0.83167 + 2.36657I 0.87472 6.65650I
u = 0.532070 0.131930I
a = 0.546352 0.863213I
b = 0.339438 + 0.970682I
0.83167 2.36657I 0.87472 + 6.65650I
u = 1.43896 + 0.36287I
a = 0.916232 + 0.157045I
b = 1.063760 0.354092I
3.95592 7.70748I 0
u = 1.43896 0.36287I
a = 0.916232 0.157045I
b = 1.063760 + 0.354092I
3.95592 + 7.70748I 0
u = 1.16519 + 0.93278I
a = 0.430958 0.453922I
b = 0.130936 1.336900I
2.17172 + 0.20438I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.16519 0.93278I
a = 0.430958 + 0.453922I
b = 0.130936 + 1.336900I
2.17172 0.20438I 0
u = 1.50599
a = 0.890789
b = 0.701130
7.41930 0
u = 1.51357
a = 0.442367
b = 0.615094
4.10092 0
u = 0.093435 + 0.449887I
a = 0.704295 + 0.829058I
b = 0.537602 + 0.282669I
1.096590 0.866114I 3.90601 + 3.40711I
u = 0.093435 0.449887I
a = 0.704295 0.829058I
b = 0.537602 0.282669I
1.096590 + 0.866114I 3.90601 3.40711I
u = 0.044561 + 0.449061I
a = 2.51002 + 1.22441I
b = 0.445864 1.148650I
6.42558 1.22817I 1.23064 + 0.76065I
u = 0.044561 0.449061I
a = 2.51002 1.22441I
b = 0.445864 + 1.148650I
6.42558 + 1.22817I 1.23064 0.76065I
u = 0.437583
a = 1.73381
b = 0.0495045
0.995678 12.7470
u = 1.58442 + 0.22351I
a = 0.988026 0.209610I
b = 0.273784 + 1.367010I
11.87800 + 3.53758I 0
u = 1.58442 0.22351I
a = 0.988026 + 0.209610I
b = 0.273784 1.367010I
11.87800 3.53758I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.57334 + 0.45526I
a = 1.096720 + 0.211977I
b = 0.40918 1.51901I
2.06161 12.99220I 0
u = 1.57334 0.45526I
a = 1.096720 0.211977I
b = 0.40918 + 1.51901I
2.06161 + 12.99220I 0
u = 1.64873 + 0.07955I
a = 0.484789 0.551045I
b = 0.220970 + 1.380770I
8.71374 3.02881I 0
u = 1.64873 0.07955I
a = 0.484789 + 0.551045I
b = 0.220970 1.380770I
8.71374 + 3.02881I 0
9
II.
I
u
2
= hu
13
u
12
+· · ·+b+1, u
14
+2u
13
+· · ·+a+5, u
15
2u
14
+· · ·5u1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
5
=
1
u
2
a
9
=
u
u
3
+ u
a
11
=
u
14
2u
13
+ ··· + 6u
2
5
u
13
+ u
12
+ ··· 2u 1
a
12
=
u
14
u
13
+ ··· + 2u 4
u
13
+ u
12
+ ··· 2u 1
a
3
=
u
11
7u
9
+ u
8
+ 18u
7
5u
6
20u
5
+ 7u
4
+ 8u
3
u
2
1
u
13
+ u
12
+ ··· 4u 1
a
7
=
u
14
+ 2u
13
+ ··· + u + 5
u
14
+ u
13
+ ··· 4u
2
2u
a
2
=
u
14
2u
13
+ ··· + 4u 4
u
14
2u
13
+ ··· + 3u
2
+ 3u
a
1
=
2u
14
2u
13
+ ··· + 6u 3
u
14
2u
13
+ ··· + 7u
2
+ 3u
a
6
=
u
2
+ 1
u
4
2u
2
a
10
=
u
5
3u
3
+ 2u
u
13
+ u
12
+ ··· + 4u
2
+ 2u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
14
5u
13
13u
12
+ 39u
11
+ 26u
10
118u
9
2u
8
+ 166u
7
44u
6
101u
5
+ 29u
4
+ 17u
3
+ 10u
2
+ 2u 4
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
15
17u
14
+ ··· 10u 1
c
2
u
15
u
14
+ ··· 5u
2
1
c
3
u
15
+ 2u
14
+ ··· + 2u 1
c
4
, c
5
u
15
2u
14
+ ··· 5u 1
c
6
u
15
+ u
14
+ ··· + 5u
2
+ 1
c
7
u
15
3u
14
+ ··· + 5u + 1
c
8
u
15
+ 2u
14
+ ··· 5u + 1
c
9
u
15
u
14
+ ··· 4u 1
c
10
u
15
+ 3u
14
+ ··· + 5u 1
c
11
u
15
2u
14
+ ··· + 2u + 1
c
12
u
15
+ 3u
13
+ ··· u 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
15
25y
14
+ ··· + 166y 1
c
2
, c
6
y
15
17y
14
+ ··· 10y 1
c
3
, c
11
y
15
+ 16y
14
+ ··· + 28y 1
c
4
, c
5
, c
8
y
15
18y
14
+ ··· + 27y 1
c
7
, c
10
y
15
9y
14
+ ··· + 11y 1
c
9
y
15
+ 7y
14
+ ··· + 38y 1
c
12
y
15
+ 6y
14
+ ··· + 7y 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.934249 + 0.468327I
a = 0.078829 0.897138I
b = 0.285799 0.922611I
5.20797 + 2.96284I 4.54487 3.34260I
u = 0.934249 0.468327I
a = 0.078829 + 0.897138I
b = 0.285799 + 0.922611I
5.20797 2.96284I 4.54487 + 3.34260I
u = 0.869322 + 0.091277I
a = 0.268456 0.210742I
b = 0.457860 + 0.901308I
1.38423 + 1.85573I 6.45379 0.08829I
u = 0.869322 0.091277I
a = 0.268456 + 0.210742I
b = 0.457860 0.901308I
1.38423 1.85573I 6.45379 + 0.08829I
u = 1.104070 + 0.476456I
a = 0.340525 0.805960I
b = 0.292941 + 1.082610I
4.60809 + 0.68620I 3.07033 0.28009I
u = 1.104070 0.476456I
a = 0.340525 + 0.805960I
b = 0.292941 1.082610I
4.60809 0.68620I 3.07033 + 0.28009I
u = 0.143480 + 0.548716I
a = 0.30256 2.25452I
b = 0.16552 1.42393I
5.28846 2.33485I 6.06895 + 0.77612I
u = 0.143480 0.548716I
a = 0.30256 + 2.25452I
b = 0.16552 + 1.42393I
5.28846 + 2.33485I 6.06895 0.77612I
u = 1.45684
a = 0.770423
b = 0.184352
5.01004 8.46440
u = 1.52546
a = 0.869923
b = 0.935208
6.67613 2.28060
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.51915 + 0.26492I
a = 0.880313 0.376323I
b = 0.05993 + 1.45415I
10.22370 0.90460I 8.60899 + 0.29397I
u = 1.51915 0.26492I
a = 0.880313 + 0.376323I
b = 0.05993 1.45415I
10.22370 + 0.90460I 8.60899 0.29397I
u = 1.55868 + 0.15458I
a = 0.923357 0.217594I
b = 0.40039 + 1.46959I
11.52840 + 4.89291I 7.41262 4.45672I
u = 1.55868 0.15458I
a = 0.923357 + 0.217594I
b = 0.40039 1.46959I
11.52840 4.89291I 7.41262 + 4.45672I
u = 0.198713
a = 4.83367
b = 0.478944
0.444342 4.06410
14
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
15
17u
14
+ ··· 10u 1)(u
44
+ 54u
43
+ ··· + 157u + 1)
c
2
(u
15
u
14
+ ··· 5u
2
1)(u
44
2u
43
+ ··· + 3u 1)
c
3
(u
15
+ 2u
14
+ ··· + 2u 1)(u
44
3u
43
+ ··· 25u + 1)
c
4
, c
5
(u
15
2u
14
+ ··· 5u 1)(u
44
3u
43
+ ··· + 36u 29)
c
6
(u
15
+ u
14
+ ··· + 5u
2
+ 1)(u
44
2u
43
+ ··· + 3u 1)
c
7
(u
15
3u
14
+ ··· + 5u + 1)(u
44
4u
43
+ ··· + 2004u 563)
c
8
(u
15
+ 2u
14
+ ··· 5u + 1)(u
44
3u
43
+ ··· + 36u 29)
c
9
(u
15
u
14
+ ··· 4u 1)(u
44
2u
43
+ ··· + 2091u 389)
c
10
(u
15
+ 3u
14
+ ··· + 5u 1)(u
44
4u
43
+ ··· + 2004u 563)
c
11
(u
15
2u
14
+ ··· + 2u + 1)(u
44
3u
43
+ ··· 25u + 1)
c
12
(u
15
+ 3u
13
+ ··· u 1)(u
44
+ u
43
+ ··· + 1354u 1081)
15
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
15
25y
14
+ ··· + 166y 1)(y
44
114y
43
+ ··· 6565y + 1)
c
2
, c
6
(y
15
17y
14
+ ··· 10y 1)(y
44
54y
43
+ ··· 157y + 1)
c
3
, c
11
(y
15
+ 16y
14
+ ··· + 28y 1)(y
44
+ 43y
43
+ ··· 415y + 1)
c
4
, c
5
, c
8
(y
15
18y
14
+ ··· + 27y 1)(y
44
43y
43
+ ··· + 154y + 841)
c
7
, c
10
(y
15
9y
14
+ ··· + 11y 1)(y
44
26y
43
+ ··· 2861866y + 316969)
c
9
(y
15
+ 7y
14
+ ··· + 38y 1)
· (y
44
+ 54y
43
+ ··· + 12410735y + 151321)
c
12
(y
15
+ 6y
14
+ ··· + 7y 1)
· (y
44
+ 49y
43
+ ··· + 24190678y + 1168561)
16