12n
0609
(K12n
0609
)
A knot diagram
1
Linearized knot diagam
3 7 8 7 10 2 11 12 3 5 4 9
Solving Sequence
7,11 5,8
4 12 3 2 1 6 10 9
c
7
c
4
c
11
c
3
c
2
c
1
c
6
c
10
c
9
c
5
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h4.50523 × 10
31
u
34
+ 3.77516 × 10
31
u
33
+ ··· + 2.98297 × 10
32
b + 5.56578 × 10
32
,
1.58581 × 10
33
u
34
2.10588 × 10
32
u
33
+ ··· + 2.08808 × 10
33
a 7.24786 × 10
33
, u
35
7u
33
+ ··· 15u 7i
I
u
2
= h−3u
13
+ 4u
12
+ 12u
11
14u
10
24u
9
+ 33u
8
+ 22u
7
41u
6
4u
5
+ 33u
4
8u
3
16u
2
+ b + 5u + 5,
u
13
u
12
4u
11
+ 3u
10
+ 8u
9
8u
8
8u
7
+ 10u
6
+ 3u
5
10u
4
+ u
3
+ 4u
2
+ a u 2,
u
15
u
14
5u
13
+ 4u
12
+ 12u
11
11u
10
16u
9
+ 18u
8
+ 11u
7
20u
6
2u
5
+ 14u
4
2u
3
6u
2
+ u + 1i
* 2 irreducible components of dim
C
= 0, with total 50 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h4.51×10
31
u
34
+3.78×10
31
u
33
+· · ·+2.98×10
32
b+5.57×10
32
, 1.59×10
33
u
34
2.11 × 10
32
u
33
+ · · · + 2.09 × 10
33
a 7.25 × 10
33
, u
35
7u
33
+ · · · 15u 7i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
5
=
0.759458u
34
+ 0.100853u
33
+ ··· 4.69237u + 3.47107
0.151032u
34
0.126557u
33
+ ··· 11.7344u 1.86585
a
8
=
1
u
2
a
4
=
0.608426u
34
+ 0.227410u
33
+ ··· + 7.04204u + 5.33692
0.151032u
34
0.126557u
33
+ ··· 11.7344u 1.86585
a
12
=
0.179494u
34
0.738948u
33
+ ··· 15.5941u 1.11702
0.545677u
34
+ 0.0968206u
33
+ ··· 9.38307u + 0.549020
a
3
=
1.02030u
34
+ 0.148917u
33
+ ··· 5.54020u + 5.06294
0.0217840u
34
0.0983476u
33
+ ··· 7.67390u 1.31640
a
2
=
1.04208u
34
+ 0.0505690u
33
+ ··· 13.2141u + 3.74654
0.0217840u
34
0.0983476u
33
+ ··· 7.67390u 1.31640
a
1
=
0.840961u
34
1.49063u
33
+ ··· 33.0344u 11.5939
0.517267u
34
+ 0.810261u
33
+ ··· + 18.9933u + 12.5715
a
6
=
0.851085u
34
0.116346u
33
+ ··· 25.8199u 1.77087
0.0725660u
34
0.436813u
33
+ ··· 17.0168u 7.55024
a
10
=
0.456623u
34
0.375284u
33
+ ··· 20.0850u + 2.76419
0.0904401u
34
+ 0.266844u
33
+ ··· + 6.89220u + 3.33219
a
9
=
3.40594u
34
+ 1.42898u
33
+ ··· 12.4503u + 24.3578
1.40463u
34
0.957154u
33
+ ··· 5.03678u 8.25778
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.81804u
34
+ 1.88122u
33
+ ··· + 110.974u + 25.9634
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
35
+ 62u
34
+ ··· + 4330075u + 134689
c
2
, c
6
u
35
+ 2u
34
+ ··· + 4061u 367
c
3
u
35
+ 2u
34
+ ··· 7u + 1
c
4
u
35
+ 10u
34
+ ··· + 1712u + 311
c
5
, c
10
u
35
u
34
+ ··· + 672u 23
c
7
u
35
7u
33
+ ··· 15u + 7
c
8
, c
12
u
35
+ 3u
34
+ ··· 97u + 19
c
9
u
35
+ 4u
34
+ ··· 54708u + 6023
c
11
u
35
5u
34
+ ··· + 422u 13
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
35
206y
34
+ ··· + 2682621801371y 18141126721
c
2
, c
6
y
35
62y
34
+ ··· + 4330075y 134689
c
3
y
35
+ 2y
34
+ ··· + 63y 1
c
4
y
35
+ 10y
34
+ ··· 500008y 96721
c
5
, c
10
y
35
3y
34
+ ··· + 454344y 529
c
7
y
35
14y
34
+ ··· + 1023y 49
c
8
, c
12
y
35
55y
34
+ ··· + 11689y 361
c
9
y
35
164y
34
+ ··· 17527853484y 36276529
c
11
y
35
+ 9y
34
+ ··· + 217500y 169
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.675365 + 0.752140I
a = 0.274011 + 1.179370I
b = 0.55916 + 1.59846I
5.38269 0.91248I 10.44886 + 2.53258I
u = 0.675365 0.752140I
a = 0.274011 1.179370I
b = 0.55916 1.59846I
5.38269 + 0.91248I 10.44886 2.53258I
u = 0.928230
a = 0.743205
b = 3.28718
10.2373 6.48310
u = 0.780540 + 0.794419I
a = 0.528114 + 0.428245I
b = 0.454633 + 0.505577I
0.06975 2.50434I 7.09658 + 4.10230I
u = 0.780540 0.794419I
a = 0.528114 0.428245I
b = 0.454633 0.505577I
0.06975 + 2.50434I 7.09658 4.10230I
u = 1.170970 + 0.199419I
a = 0.109806 0.892494I
b = 0.256411 0.529286I
2.93670 2.65045I 2.92426 + 3.85701I
u = 1.170970 0.199419I
a = 0.109806 + 0.892494I
b = 0.256411 + 0.529286I
2.93670 + 2.65045I 2.92426 3.85701I
u = 1.027690 + 0.614606I
a = 0.911917 0.413858I
b = 0.40767 1.44351I
4.22355 4.34323I 8.88159 + 4.48072I
u = 1.027690 0.614606I
a = 0.911917 + 0.413858I
b = 0.40767 + 1.44351I
4.22355 + 4.34323I 8.88159 4.48072I
u = 0.790308
a = 1.93557
b = 2.52371
10.8736 0.541730
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.779444 + 0.122722I
a = 0.11921 + 1.82402I
b = 0.692344 + 0.750731I
4.75580 + 0.44115I 1.38131 + 2.20530I
u = 0.779444 0.122722I
a = 0.11921 1.82402I
b = 0.692344 0.750731I
4.75580 0.44115I 1.38131 2.20530I
u = 1.097490 + 0.543646I
a = 0.208642 + 0.776842I
b = 0.97202 + 1.45913I
1.07838 + 5.16629I 6.84650 9.62882I
u = 1.097490 0.543646I
a = 0.208642 0.776842I
b = 0.97202 1.45913I
1.07838 5.16629I 6.84650 + 9.62882I
u = 0.879026 + 0.883079I
a = 1.65073 + 0.15661I
b = 0.276490 + 0.900117I
16.3550 + 2.1833I 9.12494 2.49613I
u = 0.879026 0.883079I
a = 1.65073 0.15661I
b = 0.276490 0.900117I
16.3550 2.1833I 9.12494 + 2.49613I
u = 1.004900 + 0.750402I
a = 0.159109 0.878002I
b = 0.886553 0.937980I
0.76221 3.35277I 9.00923 + 1.04834I
u = 1.004900 0.750402I
a = 0.159109 + 0.878002I
b = 0.886553 + 0.937980I
0.76221 + 3.35277I 9.00923 1.04834I
u = 0.980302 + 0.839353I
a = 0.12512 1.44580I
b = 0.56077 1.91870I
16.0274 + 4.2362I 8.99278 2.47237I
u = 0.980302 0.839353I
a = 0.12512 + 1.44580I
b = 0.56077 + 1.91870I
16.0274 4.2362I 8.99278 + 2.47237I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.371475 + 0.598922I
a = 0.882706 0.414519I
b = 0.207818 0.631352I
1.039020 0.567157I 9.02941 + 3.66448I
u = 0.371475 0.598922I
a = 0.882706 + 0.414519I
b = 0.207818 + 0.631352I
1.039020 + 0.567157I 9.02941 3.66448I
u = 0.663303
a = 1.17343
b = 0.625094
1.52399 5.20750
u = 1.019370 + 0.891636I
a = 0.374425 0.936128I
b = 0.81320 1.16561I
4.62293 + 8.02466I 8.99459 6.09889I
u = 1.019370 0.891636I
a = 0.374425 + 0.936128I
b = 0.81320 + 1.16561I
4.62293 8.02466I 8.99459 + 6.09889I
u = 0.625529 + 1.237630I
a = 1.149750 0.604247I
b = 0.498371 1.184570I
17.6881 + 5.3333I 10.32662 2.48689I
u = 0.625529 1.237630I
a = 1.149750 + 0.604247I
b = 0.498371 + 1.184570I
17.6881 5.3333I 10.32662 + 2.48689I
u = 0.936546 + 1.042190I
a = 0.390412 + 0.550295I
b = 0.114051 + 0.985066I
5.01490 1.02895I 12.04957 + 2.53411I
u = 0.936546 1.042190I
a = 0.390412 0.550295I
b = 0.114051 0.985066I
5.01490 + 1.02895I 12.04957 2.53411I
u = 0.587494
a = 0.0584535
b = 1.70895
2.29968 3.86260
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.22874 + 0.83593I
a = 0.186277 + 1.290050I
b = 1.04714 + 1.80529I
15.6932 12.6803I 6.00000 + 5.76735I
u = 1.22874 0.83593I
a = 0.186277 1.290050I
b = 1.04714 1.80529I
15.6932 + 12.6803I 6.00000 5.76735I
u = 0.364021 + 0.159376I
a = 2.08592 + 2.84763I
b = 0.575909 + 0.656185I
0.87711 2.42741I 7.50647 + 0.56307I
u = 0.364021 0.159376I
a = 2.08592 2.84763I
b = 0.575909 0.656185I
0.87711 + 2.42741I 7.50647 0.56307I
u = 2.09595
a = 0.386813
b = 0.373598
7.66684 0
8
II.
I
u
2
= h−3u
13
+4u
12
+· · · +b + 5, u
13
u
12
+· · · +a 2, u
15
u
14
+· · · +u + 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
5
=
u
13
+ u
12
+ ··· + u + 2
3u
13
4u
12
+ ··· 5u 5
a
8
=
1
u
2
a
4
=
4u
13
+ 5u
12
+ ··· + 6u + 7
3u
13
4u
12
+ ··· 5u 5
a
12
=
15u
14
+ 12u
13
+ ··· + 38u + 6
7u
14
4u
13
+ ··· 22u 6
a
3
=
u
14
5u
13
+ ··· + 5u + 6
3u
13
3u
12
+ ··· 4u 5
a
2
=
u
14
2u
13
+ ··· + u + 1
3u
13
3u
12
+ ··· 4u 5
a
1
=
20u
14
13u
13
+ ··· 53u 20
10u
14
+ 4u
13
+ ··· + 32u + 12
a
6
=
u
14
3u
13
+ ··· + 9u + 9
4u
14
3u
13
+ ··· 11u 7
a
10
=
4u
14
+ 4u
13
+ ··· + 5u
2
+ 6u
4u
14
4u
13
+ ··· 9u
2
8u
a
9
=
9u
14
+ 7u
13
+ ··· 53u 30
7u
14
+ 37u
12
+ ··· + 30u + 17
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
14
+ 19u
13
+ 5u
12
83u
11
+ 6u
10
+ 184u
9
78u
8
223u
7
+
161u
6
+ 135u
5
187u
4
27u
3
+ 108u
2
9u 37
9
(iv) u-Polynomials at the component
10
Crossings u-Polynomials at each crossing
c
1
u
15
15u
14
+ ··· + 5u 1
c
2
u
15
3u
14
+ ··· + 3u 1
c
3
u
15
+ u
14
+ ··· + 3u + 1
c
4
u
15
+ u
14
+ ··· + 2u 1
c
5
u
15
+ 6u
13
+ ··· 2u 1
c
6
u
15
+ 3u
14
+ ··· + 3u + 1
c
7
u
15
u
14
+ ··· + u + 1
c
8
u
15
10u
13
+ ··· + u + 1
c
9
u
15
5u
14
+ ··· 14u + 1
c
10
u
15
+ 6u
13
+ ··· 2u + 1
c
11
u
15
2u
13
+ ··· 11u
2
1
c
12
u
15
10u
13
+ ··· + u 1
11
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
15
59y
14
+ ··· + 5y 1
c
2
, c
6
y
15
15y
14
+ ··· + 5y 1
c
3
y
15
+ 5y
14
+ ··· + 17y 1
c
4
y
15
7y
14
+ ··· 14y 1
c
5
, c
10
y
15
+ 12y
14
+ ··· 6y 1
c
7
y
15
11y
14
+ ··· + 13y 1
c
8
, c
12
y
15
20y
14
+ ··· 9y 1
c
9
y
15
53y
14
+ ··· + 38y 1
c
11
y
15
4y
14
+ ··· 22y 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.945967 + 0.364350I
a = 0.447371 1.296300I
b = 0.54568 1.59008I
0.121261 + 0.585920I 6.11150 + 0.88466I
u = 0.945967 0.364350I
a = 0.447371 + 1.296300I
b = 0.54568 + 1.59008I
0.121261 0.585920I 6.11150 0.88466I
u = 0.910844 + 0.329867I
a = 0.63588 + 1.36871I
b = 0.434324 + 0.641040I
4.62454 + 1.37648I 3.28500 4.85991I
u = 0.910844 0.329867I
a = 0.63588 1.36871I
b = 0.434324 0.641040I
4.62454 1.37648I 3.28500 + 4.85991I
u = 0.483149 + 0.790685I
a = 0.552124 + 0.303102I
b = 0.006540 0.521541I
3.32772 1.16564I 9.43576 + 1.29116I
u = 0.483149 0.790685I
a = 0.552124 0.303102I
b = 0.006540 + 0.521541I
3.32772 + 1.16564I 9.43576 1.29116I
u = 0.858047 + 0.316539I
a = 0.85127 1.27055I
b = 0.183732 + 0.291743I
0.26649 3.45017I 3.88329 + 5.28365I
u = 0.858047 0.316539I
a = 0.85127 + 1.27055I
b = 0.183732 0.291743I
0.26649 + 3.45017I 3.88329 5.28365I
u = 1.047160 + 0.587752I
a = 0.157821 + 0.780474I
b = 1.54439 + 1.24046I
1.69704 + 6.28081I 7.36459 5.95096I
u = 1.047160 0.587752I
a = 0.157821 0.780474I
b = 1.54439 1.24046I
1.69704 6.28081I 7.36459 + 5.95096I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.686348
a = 1.89062
b = 3.01568
11.2981 19.7640
u = 1.189670 + 0.653681I
a = 0.004952 0.642912I
b = 0.747056 0.985367I
1.40673 4.12593I 4.27551 + 5.62522I
u = 1.189670 0.653681I
a = 0.004952 + 0.642912I
b = 0.747056 + 0.985367I
1.40673 + 4.12593I 4.27551 5.62522I
u = 0.428593
a = 1.22503
b = 1.45207
2.69518 18.0200
u = 1.84731
a = 0.414496
b = 0.694610
7.46852 5.49540
15
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
15
15u
14
+ ··· + 5u 1)(u
35
+ 62u
34
+ ··· + 4330075u + 134689)
c
2
(u
15
3u
14
+ ··· + 3u 1)(u
35
+ 2u
34
+ ··· + 4061u 367)
c
3
(u
15
+ u
14
+ ··· + 3u + 1)(u
35
+ 2u
34
+ ··· 7u + 1)
c
4
(u
15
+ u
14
+ ··· + 2u 1)(u
35
+ 10u
34
+ ··· + 1712u + 311)
c
5
(u
15
+ 6u
13
+ ··· 2u 1)(u
35
u
34
+ ··· + 672u 23)
c
6
(u
15
+ 3u
14
+ ··· + 3u + 1)(u
35
+ 2u
34
+ ··· + 4061u 367)
c
7
(u
15
u
14
+ ··· + u + 1)(u
35
7u
33
+ ··· 15u + 7)
c
8
(u
15
10u
13
+ ··· + u + 1)(u
35
+ 3u
34
+ ··· 97u + 19)
c
9
(u
15
5u
14
+ ··· 14u + 1)(u
35
+ 4u
34
+ ··· 54708u + 6023)
c
10
(u
15
+ 6u
13
+ ··· 2u + 1)(u
35
u
34
+ ··· + 672u 23)
c
11
(u
15
2u
13
+ ··· 11u
2
1)(u
35
5u
34
+ ··· + 422u 13)
c
12
(u
15
10u
13
+ ··· + u 1)(u
35
+ 3u
34
+ ··· 97u + 19)
16
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
15
59y
14
+ ··· + 5y 1)
· (y
35
206y
34
+ ··· + 2682621801371y 18141126721)
c
2
, c
6
(y
15
15y
14
+ ··· + 5y 1)(y
35
62y
34
+ ··· + 4330075y 134689)
c
3
(y
15
+ 5y
14
+ ··· + 17y 1)(y
35
+ 2y
34
+ ··· + 63y 1)
c
4
(y
15
7y
14
+ ··· 14y 1)(y
35
+ 10y
34
+ ··· 500008y 96721)
c
5
, c
10
(y
15
+ 12y
14
+ ··· 6y 1)(y
35
3y
34
+ ··· + 454344y 529)
c
7
(y
15
11y
14
+ ··· + 13y 1)(y
35
14y
34
+ ··· + 1023y 49)
c
8
, c
12
(y
15
20y
14
+ ··· 9y 1)(y
35
55y
34
+ ··· + 11689y 361)
c
9
(y
15
53y
14
+ ··· + 38y 1)
· (y
35
164y
34
+ ··· 17527853484y 36276529)
c
11
(y
15
4y
14
+ ··· 22y 1)(y
35
+ 9y
34
+ ··· + 217500y 169)
17