12n
0610
(K12n
0610
)
A knot diagram
1
Linearized knot diagam
3 7 9 7 10 2 11 12 3 5 8 4
Solving Sequence
8,12 4,9
1 3 11 7 5 2 6 10
c
8
c
12
c
3
c
11
c
7
c
4
c
2
c
6
c
10
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h31u
18
+ 105u
17
+ ··· + 2b + 78, 23u
18
77u
17
+ ··· + 4a 56, u
19
+ 5u
18
+ ··· 2u + 4i
I
u
2
= h−u
10
u
9
+ 5u
8
+ 5u
7
7u
6
7u
5
+ 2u
4
+ 2u
3
2u
2
+ b 2u + 1,
2u
10
13u
8
u
7
+ 29u
6
+ 6u
5
25u
4
11u
3
+ 9u
2
+ a + 6u 5,
u
11
7u
9
u
8
+ 17u
7
+ 6u
6
16u
5
11u
4
+ 5u
3
+ 6u
2
2u 1i
I
u
3
= h22u
5
a
3
7u
5
a
2
+ ··· + 11a
3
12a
2
, 2u
5
a
3
2u
5
a
2
+ ··· 9a + 31, u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1i
* 3 irreducible components of dim
C
= 0, with total 54 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h31u
18
+ 105u
17
+ · · · + 2b + 78, 23u
18
77u
17
+ · · · + 4a
56, u
19
+ 5u
18
+ · · · 2u + 4i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
4
=
23
4
u
18
+
77
4
u
17
+ ···
73
4
u + 14
31
2
u
18
105
2
u
17
+ ··· +
89
2
u 39
a
9
=
1
u
2
a
1
=
5
2
u
18
8u
17
+ ··· + 7u
11
2
11
2
u
18
+
35
2
u
17
+ ···
23
2
u + 12
a
3
=
21
4
u
18
+
71
4
u
17
+ ···
63
4
u + 13
27
2
u
18
93
2
u
17
+ ··· +
81
2
u 35
a
11
=
u
u
a
7
=
u
2
+ 1
u
2
a
5
=
35
4
u
18
121
4
u
17
+ ··· +
97
4
u 23
17
2
u
18
+
59
2
u
17
+ ···
47
2
u + 21
a
2
=
7
4
u
18
+
17
4
u
17
+ ···
9
4
u
2
+
11
4
u
9
2
u
18
25
2
u
17
+ ··· +
9
2
u 7
a
6
=
17
2
u
18
+ 28u
17
+ ··· 18u +
39
2
19
2
u
18
61
2
u
17
+ ··· +
39
2
u 20
a
10
=
2u
18
+
15
2
u
17
+ ···
15
2
u +
13
2
5
2
u
18
19
2
u
17
+ ··· +
21
2
u 8
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
18
+ 13u
17
4u
16
78u
15
41u
14
+ 166u
13
+ 76u
12
219u
11
+
32u
10
+ 271u
9
88u
8
117u
7
+ 158u
6
+ 35u
5
79u
4
+ 21u
3
+ 27u
2
14u + 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
19
+ 14u
18
+ ··· + 5120u + 4096
c
2
, c
6
u
19
12u
18
+ ··· 288u + 64
c
3
, c
5
, c
9
c
10
u
19
+ u
17
+ ··· u 1
c
4
, c
12
u
19
+ 4u
18
+ ··· 5u + 1
c
7
, c
8
, c
11
u
19
5u
18
+ ··· 2u 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
19
30y
18
+ ··· 175112192y 16777216
c
2
, c
6
y
19
14y
18
+ ··· + 5120y 4096
c
3
, c
5
, c
9
c
10
y
19
+ 2y
18
+ ··· 5y 1
c
4
, c
12
y
19
+ 6y
18
+ ··· + 7y 1
c
7
, c
8
, c
11
y
19
21y
18
+ ··· 20y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.657865 + 0.659754I
a = 1.83847 0.19703I
b = 0.840313 + 0.475404I
6.26672 + 9.86714I 1.83864 7.22747I
u = 0.657865 0.659754I
a = 1.83847 + 0.19703I
b = 0.840313 0.475404I
6.26672 9.86714I 1.83864 + 7.22747I
u = 0.731989 + 0.424524I
a = 0.236670 + 0.017802I
b = 0.014997 + 0.399746I
1.25043 1.39622I 3.01531 + 0.47414I
u = 0.731989 0.424524I
a = 0.236670 0.017802I
b = 0.014997 0.399746I
1.25043 + 1.39622I 3.01531 0.47414I
u = 0.343340 + 0.751449I
a = 0.82615 + 1.26298I
b = 0.042850 0.808910I
7.21208 5.16693I 3.65094 + 2.70430I
u = 0.343340 0.751449I
a = 0.82615 1.26298I
b = 0.042850 + 0.808910I
7.21208 + 5.16693I 3.65094 2.70430I
u = 0.681999 + 0.462895I
a = 1.52804 + 0.77389I
b = 0.565827 0.578592I
0.46687 + 4.27090I 1.13834 9.12104I
u = 0.681999 0.462895I
a = 1.52804 0.77389I
b = 0.565827 + 0.578592I
0.46687 4.27090I 1.13834 + 9.12104I
u = 1.354910 + 0.296926I
a = 0.145523 + 0.433113I
b = 0.213860 1.352780I
1.85132 + 1.41251I 0.36067 3.57890I
u = 1.354910 0.296926I
a = 0.145523 0.433113I
b = 0.213860 + 1.352780I
1.85132 1.41251I 0.36067 + 3.57890I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.47733
a = 0.890647
b = 2.75655
4.17390 0.157280
u = 0.186583 + 0.488198I
a = 1.295720 0.446937I
b = 0.229294 + 0.509039I
0.957477 0.926186I 5.31698 + 3.03988I
u = 0.186583 0.488198I
a = 1.295720 + 0.446937I
b = 0.229294 0.509039I
0.957477 + 0.926186I 5.31698 3.03988I
u = 1.58692 + 0.20962I
a = 1.074740 0.808456I
b = 3.13504 + 1.45007I
1.21163 13.10440I 1.22567 + 6.39706I
u = 1.58692 0.20962I
a = 1.074740 + 0.808456I
b = 3.13504 1.45007I
1.21163 + 13.10440I 1.22567 6.39706I
u = 1.60002 + 0.13490I
a = 0.946803 + 0.879127I
b = 2.76241 1.93610I
8.22021 6.49398I 0.71170 + 7.53180I
u = 1.60002 0.13490I
a = 0.946803 0.879127I
b = 2.76241 + 1.93610I
8.22021 + 6.49398I 0.71170 7.53180I
u = 1.64272 + 0.08524I
a = 0.047885 + 0.426520I
b = 0.024584 0.265877I
9.63124 + 3.23773I 4.43153 1.86824I
u = 1.64272 0.08524I
a = 0.047885 0.426520I
b = 0.024584 + 0.265877I
9.63124 3.23773I 4.43153 + 1.86824I
6
II.
I
u
2
= h−u
10
u
9
+· · · +b+1, 2u
10
13u
8
+· · · +a5, u
11
7u
9
+· · · 2u1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
4
=
2u
10
+ 13u
8
+ u
7
29u
6
6u
5
+ 25u
4
+ 11u
3
9u
2
6u + 5
u
10
+ u
9
5u
8
5u
7
+ 7u
6
+ 7u
5
2u
4
2u
3
+ 2u
2
+ 2u 1
a
9
=
1
u
2
a
1
=
3u
10
20u
8
u
7
+ 46u
6
+ 8u
5
42u
4
18u
3
+ 18u
2
+ 12u 9
2u
10
2u
9
+ 11u
8
+ 11u
7
18u
6
20u
5
+ 6u
4
+ 13u
3
5u + 1
a
3
=
2u
10
+ 13u
8
+ 2u
7
29u
6
10u
5
+ 24u
4
+ 15u
3
6u
2
6u + 4
u
10
5u
8
u
7
+ 8u
6
+ 3u
5
5u
4
2u
3
+ 3u
2
+ 2u 1
a
11
=
u
u
a
7
=
u
2
+ 1
u
2
a
5
=
u
10
+ u
9
+ 7u
8
4u
7
18u
6
+ 2u
5
+ 19u
4
+ 6u
3
7u
2
3u + 4
u
9
+ 5u
7
+ 2u
6
8u
5
7u
4
+ 4u
3
+ 6u
2
2
a
2
=
u
10
+ 7u
8
+ u
7
17u
6
5u
5
+ 15u
4
+ 8u
3
3u
2
3u + 3
u
6
u
5
3u
4
+ u
3
+ 2u
2
+ 2u 1
a
6
=
u
10
+ u
9
+ 8u
8
5u
7
23u
6
+ 5u
5
+ 28u
4
+ 6u
3
14u
2
7u + 6
u
8
+ 5u
6
+ u
5
7u
4
3u
3
+ 2u
2
+ 2u 2
a
10
=
u
10
u
9
6u
8
+ 5u
7
+ 13u
6
7u
5
14u
4
+ 2u
3
+ 10u
2
4
u
10
+ u
9
+ 6u
8
4u
7
13u
6
+ 2u
5
+ 13u
4
+ 5u
3
6u
2
2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 5u
10
2u
9
38u
8
+ 6u
7
+ 97u
6
+ 11u
5
90u
4
43u
3
+ 21u
2
+ 19u 10
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
11
11u
10
+ ··· + 7u 1
c
2
u
11
3u
10
u
9
+ 8u
8
11u
6
+ 5u
5
+ 6u
4
7u
3
u
2
+ 3u 1
c
3
, c
10
u
11
+ 4u
9
+ u
8
+ 4u
7
+ 3u
6
u
5
+ 2u
4
2u
3
u
2
u 1
c
4
, c
12
u
11
6u
9
9u
8
+ 2u
7
+ 21u
6
+ 35u
5
+ 22u
4
8u
3
19u
2
11u 3
c
5
, c
9
u
11
+ 4u
9
u
8
+ 4u
7
3u
6
u
5
2u
4
2u
3
+ u
2
u + 1
c
6
u
11
+ 3u
10
u
9
8u
8
+ 11u
6
+ 5u
5
6u
4
7u
3
+ u
2
+ 3u + 1
c
7
, c
8
u
11
7u
9
u
8
+ 17u
7
+ 6u
6
16u
5
11u
4
+ 5u
3
+ 6u
2
2u 1
c
11
u
11
7u
9
+ u
8
+ 17u
7
6u
6
16u
5
+ 11u
4
+ 5u
3
6u
2
2u + 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
11
23y
10
+ ··· 13y 1
c
2
, c
6
y
11
11y
10
+ ··· + 7y 1
c
3
, c
5
, c
9
c
10
y
11
+ 8y
10
+ 24y
9
+ 29y
8
2y
7
39y
6
33y
5
+ 16y
3
+ 7y
2
y 1
c
4
, c
12
y
11
12y
10
+ ··· + 7y 9
c
7
, c
8
, c
11
y
11
14y
10
+ ··· + 16y 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.579371 + 0.652000I
a = 0.842460 0.562659I
b = 0.512370 + 0.070135I
1.84599 2.26752I 7.70963 + 6.53422I
u = 0.579371 0.652000I
a = 0.842460 + 0.562659I
b = 0.512370 0.070135I
1.84599 + 2.26752I 7.70963 6.53422I
u = 1.17071
a = 0.718847
b = 0.387689
0.926107 2.28510
u = 0.548197 + 0.267302I
a = 0.773035 + 0.456348I
b = 0.051698 + 1.041650I
4.46954 + 0.96297I 1.50871 7.32884I
u = 0.548197 0.267302I
a = 0.773035 0.456348I
b = 0.051698 1.041650I
4.46954 0.96297I 1.50871 + 7.32884I
u = 1.52989
a = 1.75406
b = 5.06427
2.74678 6.18970
u = 1.57622 + 0.07505I
a = 0.197276 + 0.748318I
b = 0.112310 0.460322I
11.80780 2.19766I 5.16669 + 2.50465I
u = 1.57622 0.07505I
a = 0.197276 0.748318I
b = 0.112310 + 0.460322I
11.80780 + 2.19766I 5.16669 2.50465I
u = 1.58380 + 0.17649I
a = 0.839023 + 0.333910I
b = 2.31428 0.45989I
9.15447 + 5.23820I 6.25661 4.80987I
u = 1.58380 0.17649I
a = 0.839023 0.333910I
b = 2.31428 + 0.45989I
9.15447 5.23820I 6.25661 + 4.80987I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.311994
a = 5.89057
b = 1.40079
3.73847 13.3790
11
III. I
u
3
= h22u
5
a
3
7u
5
a
2
+ · · · + 11a
3
12a
2
, 2u
5
a
3
2u
5
a
2
+ · · · 9a +
31, u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
4
=
a
0.511628a
3
u
5
+ 0.162791a
2
u
5
+ ··· 0.255814a
3
+ 0.279070a
2
a
9
=
1
u
2
a
1
=
a
2
u
0.325581a
3
u
5
+ 0.837209a
2
u
5
+ ··· + 0.279070a 1.53488
a
3
=
0.511628a
3
u
5
+ 0.162791a
2
u
5
+ ··· + 0.279070a
2
+ a
0.674419a
3
u
5
0.465116a
2
u
5
+ ··· 0.604651a + 0.325581
a
11
=
u
u
a
7
=
u
2
+ 1
u
2
a
5
=
0.604651a
3
u
5
+ a
2
u
5
+ ··· 0.0930233a 0.488372
0.767442a
3
u
5
1.30233a
2
u
5
+ ··· + 0.488372a + 0.813953
a
2
=
1.48837a
3
u
5
0.0930233a
2
u
5
+ ··· + 0.813953a + 0.0232558
2.23256a
3
u
5
+ 0.162791a
2
u
5
+ ··· 1.11628a + 0.139535
a
6
=
1.95349a
3
u
5
+ 0.511628a
2
u
5
+ ··· + 0.372093a 0.0465116
2.79070a
3
u
5
0.418605a
2
u
5
+ ··· + 1.30233a 1.16279
a
10
=
0.837209a
3
u
5
+ 0.418605a
2
u
5
+ ··· + 0.627907a 1.95349
0.720930a
3
u
5
0.488372a
2
u
5
+ ··· 1.11628a + 0.139535
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
+ 8u + 2
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
2
+ 3u + 1)
12
c
2
, c
6
(u
2
+ u 1)
12
c
3
, c
5
, c
9
c
10
u
24
u
23
+ ··· + 14u 1
c
4
, c
12
u
24
+ 7u
23
+ ··· + 146u + 139
c
7
, c
8
, c
11
(u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1)
4
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
2
7y + 1)
12
c
2
, c
6
(y
2
3y + 1)
12
c
3
, c
5
, c
9
c
10
y
24
+ 7y
23
+ ··· 92y + 1
c
4
, c
12
y
24
9y
23
+ ··· 45780y + 19321
c
7
, c
8
, c
11
(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
4
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.493180 + 0.575288I
a = 0.657492 + 0.467942I
b = 0.520619 + 0.221185I
0.98760 1.97241I 3.42428 + 3.68478I
u = 0.493180 + 0.575288I
a = 1.132730 0.592761I
b = 0.463950 + 0.261122I
0.98760 1.97241I 3.42428 + 3.68478I
u = 0.493180 + 0.575288I
a = 0.877441 + 1.072190I
b = 0.49508 1.34709I
6.90809 1.97241I 3.42428 + 3.68478I
u = 0.493180 + 0.575288I
a = 2.12164 0.74540I
b = 0.346720 + 0.084390I
6.90809 1.97241I 3.42428 + 3.68478I
u = 0.493180 0.575288I
a = 0.657492 0.467942I
b = 0.520619 0.221185I
0.98760 + 1.97241I 3.42428 3.68478I
u = 0.493180 0.575288I
a = 1.132730 + 0.592761I
b = 0.463950 0.261122I
0.98760 + 1.97241I 3.42428 3.68478I
u = 0.493180 0.575288I
a = 0.877441 1.072190I
b = 0.49508 + 1.34709I
6.90809 + 1.97241I 3.42428 3.68478I
u = 0.493180 0.575288I
a = 2.12164 + 0.74540I
b = 0.346720 0.084390I
6.90809 + 1.97241I 3.42428 3.68478I
u = 0.483672
a = 1.38685 + 1.13721I
b = 0.452109 + 1.065290I
4.68669 5.41680
u = 0.483672
a = 1.38685 1.13721I
b = 0.452109 1.065290I
4.68669 5.41680
15
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.483672
a = 2.99214
b = 1.78193
3.20899 5.41680
u = 0.483672
a = 4.26951
b = 0.585345
3.20899 5.41680
u = 1.52087 + 0.16310I
a = 0.981577 + 0.385534I
b = 2.51558 0.17254I
7.64342 + 4.59213I 0.58114 3.20482I
u = 1.52087 + 0.16310I
a = 0.720483 + 0.010543I
b = 2.36775 0.07374I
7.64342 + 4.59213I 0.58114 3.20482I
u = 1.52087 + 0.16310I
a = 0.85700 1.31859I
b = 2.04763 + 2.23940I
0.25226 + 4.59213I 0.58114 3.20482I
u = 1.52087 + 0.16310I
a = 0.173447 + 0.281644I
b = 1.66060 1.59461I
0.25226 + 4.59213I 0.58114 3.20482I
u = 1.52087 0.16310I
a = 0.981577 0.385534I
b = 2.51558 + 0.17254I
7.64342 4.59213I 0.58114 + 3.20482I
u = 1.52087 0.16310I
a = 0.720483 0.010543I
b = 2.36775 + 0.07374I
7.64342 4.59213I 0.58114 + 3.20482I
u = 1.52087 0.16310I
a = 0.85700 + 1.31859I
b = 2.04763 2.23940I
0.25226 4.59213I 0.58114 + 3.20482I
u = 1.52087 0.16310I
a = 0.173447 0.281644I
b = 1.66060 + 1.59461I
0.25226 4.59213I 0.58114 + 3.20482I
16
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.53904
a = 0.554670 + 0.861910I
b = 1.58366 0.52245I
11.6079 4.26950
u = 1.53904
a = 0.554670 0.861910I
b = 1.58366 + 0.52245I
11.6079 4.26950
u = 1.53904
a = 1.11428
b = 3.94128
3.71224 4.26950
u = 1.53904
a = 1.79000
b = 4.35087
3.71224 4.26950
17
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
+ 3u + 1)
12
)(u
11
11u
10
+ ··· + 7u 1)
· (u
19
+ 14u
18
+ ··· + 5120u + 4096)
c
2
(u
2
+ u 1)
12
· (u
11
3u
10
u
9
+ 8u
8
11u
6
+ 5u
5
+ 6u
4
7u
3
u
2
+ 3u 1)
· (u
19
12u
18
+ ··· 288u + 64)
c
3
, c
10
(u
11
+ 4u
9
+ u
8
+ 4u
7
+ 3u
6
u
5
+ 2u
4
2u
3
u
2
u 1)
· (u
19
+ u
17
+ ··· u 1)(u
24
u
23
+ ··· + 14u 1)
c
4
, c
12
(u
11
6u
9
9u
8
+ 2u
7
+ 21u
6
+ 35u
5
+ 22u
4
8u
3
19u
2
11u 3)
· (u
19
+ 4u
18
+ ··· 5u + 1)(u
24
+ 7u
23
+ ··· + 146u + 139)
c
5
, c
9
(u
11
+ 4u
9
u
8
+ 4u
7
3u
6
u
5
2u
4
2u
3
+ u
2
u + 1)
· (u
19
+ u
17
+ ··· u 1)(u
24
u
23
+ ··· + 14u 1)
c
6
(u
2
+ u 1)
12
· (u
11
+ 3u
10
u
9
8u
8
+ 11u
6
+ 5u
5
6u
4
7u
3
+ u
2
+ 3u + 1)
· (u
19
12u
18
+ ··· 288u + 64)
c
7
, c
8
(u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1)
4
· (u
11
7u
9
u
8
+ 17u
7
+ 6u
6
16u
5
11u
4
+ 5u
3
+ 6u
2
2u 1)
· (u
19
5u
18
+ ··· 2u 4)
c
11
(u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1)
4
· (u
11
7u
9
+ u
8
+ 17u
7
6u
6
16u
5
+ 11u
4
+ 5u
3
6u
2
2u + 1)
· (u
19
5u
18
+ ··· 2u 4)
18
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
7y + 1)
12
)(y
11
23y
10
+ ··· 13y 1)
· (y
19
30y
18
+ ··· 175112192y 16777216)
c
2
, c
6
((y
2
3y + 1)
12
)(y
11
11y
10
+ ··· + 7y 1)
· (y
19
14y
18
+ ··· + 5120y 4096)
c
3
, c
5
, c
9
c
10
(y
11
+ 8y
10
+ 24y
9
+ 29y
8
2y
7
39y
6
33y
5
+ 16y
3
+ 7y
2
y 1)
· (y
19
+ 2y
18
+ ··· 5y 1)(y
24
+ 7y
23
+ ··· 92y + 1)
c
4
, c
12
(y
11
12y
10
+ ··· + 7y 9)(y
19
+ 6y
18
+ ··· + 7y 1)
· (y
24
9y
23
+ ··· 45780y + 19321)
c
7
, c
8
, c
11
(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
4
· (y
11
14y
10
+ ··· + 16y 1)(y
19
21y
18
+ ··· 20y 16)
19