12n
0612
(K12n
0612
)
A knot diagram
1
Linearized knot diagam
3 7 11 1 10 8 2 1 4 6 4 10
Solving Sequence
1,4 5,10
6 9 8 12 11 3 2 7
c
4
c
5
c
9
c
8
c
12
c
11
c
3
c
1
c
7
c
2
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hb u,
65065875226664520u
27
+ 9394396496362895u
26
+ ··· + 76364734116743a + 26735659168418070,
u
28
+ 23u
26
+ ··· 3u + 1i
I
u
2
= hb + u, 5u
16
+ u
15
+ ··· + a 5,
u
17
+ 3u
15
u
14
4u
13
5u
11
+ 5u
10
+ 11u
9
6u
8
2u
7
2u
6
7u
5
+ 8u
4
+ 5u
3
5u
2
u + 1i
I
u
3
= h1.90741 × 10
76
u
35
+ 2.50394 × 10
76
u
34
+ ··· + 5.34816 × 10
78
b 7.63438 × 10
78
,
4.20379 × 10
66
u
35
+ 2.74371 × 10
66
u
34
+ ··· + 1.04184 × 10
69
a 1.38242 × 10
70
,
u
36
+ u
35
+ ··· 2560u + 121i
* 3 irreducible components of dim
C
= 0, with total 81 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hb u, 6.51 × 10
16
u
27
+ 9.39 × 10
15
u
26
+ · · · + 7.64 × 10
13
a + 2.67 ×
10
16
, u
28
+ 23u
26
+ · · · 3u + 1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
5
=
1
u
2
a
10
=
852.041u
27
123.020u
26
+ ··· 1960.13u 350.105
u
a
6
=
104.065u
27
+ 370.478u
26
+ ··· 4216.19u + 1309.36
42.7858u
27
+ 67.8173u
26
+ ··· 845.364u + 240.781
a
9
=
852.041u
27
123.020u
26
+ ··· 1959.13u 350.105
u
a
8
=
852.041u
27
123.020u
26
+ ··· 1959.13u 350.105
240.781u
27
+ 42.7858u
26
+ ··· + 483.981u + 123.020
a
12
=
456.322u
27
+ 18.9555u
26
+ ··· 1801.95u + 59.0018
240.781u
27
42.7858u
26
+ ··· 481.981u 123.020
a
11
=
697.103u
27
23.8304u
26
+ ··· 2283.93u 64.0183
240.781u
27
42.7858u
26
+ ··· 481.981u 123.020
a
3
=
186.897u
27
+ 111.670u
26
+ ··· 1633.52u + 381.526
80.2342u
27
172.964u
26
+ ··· + 2060.86u 611.260
a
2
=
643.875u
27
+ 247.704u
26
+ ··· 217.453u + 810.960
403.888u
27
+ 1.74743u
26
+ ··· 1518.50u + 43.0095
a
7
=
20.8672u
27
274.777u
26
+ ··· + 2601.82u 917.955
35.7010u
27
+ 222.640u
26
+ ··· 2384.15u + 774.366
(ii) Obstruction class = 1
(iii) Cusp Shapes =
57088194451595465
76364734116743
u
27
+
88581311353921087
76364734116743
u
26
+···
1111026347572146836
76364734116743
u+
313608959053702506
76364734116743
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
28
+ 9u
27
+ ··· + 84u + 16
c
2
, c
7
u
28
+ 5u
27
+ ··· + 2u + 4
c
3
, c
5
, c
10
c
11
u
28
+ u
27
+ ··· + 4u + 1
c
4
, c
9
u
28
+ 23u
26
+ ··· + 3u + 1
c
8
u
28
25u
27
+ ··· 98862u + 9028
c
12
u
28
+ 21u
27
+ ··· + 3584u + 512
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
28
+ 21y
27
+ ··· + 2064y + 256
c
2
, c
7
y
28
+ 9y
27
+ ··· + 84y + 16
c
3
, c
5
, c
10
c
11
y
28
11y
27
+ ··· 6y + 1
c
4
, c
9
y
28
+ 46y
27
+ ··· + 49y + 1
c
8
y
28
3y
27
+ ··· + 785869044y + 81504784
c
12
y
28
17y
27
+ ··· + 4456448y + 262144
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.062917 + 0.794694I
a = 1.44001 0.70376I
b = 0.062917 + 0.794694I
1.93668 4.60321I 5.64825 + 3.26019I
u = 0.062917 0.794694I
a = 1.44001 + 0.70376I
b = 0.062917 0.794694I
1.93668 + 4.60321I 5.64825 3.26019I
u = 0.193820 + 0.693750I
a = 1.312680 0.250146I
b = 0.193820 + 0.693750I
0.409488 0.484105I 3.68035 + 2.98454I
u = 0.193820 0.693750I
a = 1.312680 + 0.250146I
b = 0.193820 0.693750I
0.409488 + 0.484105I 3.68035 2.98454I
u = 0.015958 + 0.620215I
a = 2.15814 0.25579I
b = 0.015958 + 0.620215I
5.53121 + 1.96442I 8.05770 3.63784I
u = 0.015958 0.620215I
a = 2.15814 + 0.25579I
b = 0.015958 0.620215I
5.53121 1.96442I 8.05770 + 3.63784I
u = 0.007916 + 0.540155I
a = 2.68846 + 0.36830I
b = 0.007916 + 0.540155I
0.95872 + 8.32918I 2.85757 9.28705I
u = 0.007916 0.540155I
a = 2.68846 0.36830I
b = 0.007916 0.540155I
0.95872 8.32918I 2.85757 + 9.28705I
u = 0.018995 + 0.532352I
a = 2.36847 + 0.52484I
b = 0.018995 + 0.532352I
0.30181 2.82865I 1.29087 + 4.58370I
u = 0.018995 0.532352I
a = 2.36847 0.52484I
b = 0.018995 0.532352I
0.30181 + 2.82865I 1.29087 4.58370I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.25002 + 1.56539I
a = 0.238631 0.969260I
b = 0.25002 + 1.56539I
0.93824 + 1.99231I 0
u = 0.25002 1.56539I
a = 0.238631 + 0.969260I
b = 0.25002 1.56539I
0.93824 1.99231I 0
u = 0.005308 + 0.404634I
a = 0.23723 + 2.20308I
b = 0.005308 + 0.404634I
3.88624 2.72415I 0.13151 + 3.72503I
u = 0.005308 0.404634I
a = 0.23723 2.20308I
b = 0.005308 0.404634I
3.88624 + 2.72415I 0.13151 3.72503I
u = 0.182846 + 0.331511I
a = 0.690101 + 0.486506I
b = 0.182846 + 0.331511I
0.224067 0.893165I 4.75660 + 7.55885I
u = 0.182846 0.331511I
a = 0.690101 0.486506I
b = 0.182846 0.331511I
0.224067 + 0.893165I 4.75660 7.55885I
u = 0.50624 + 1.65356I
a = 0.039303 0.997212I
b = 0.50624 + 1.65356I
0.51665 + 9.12206I 0
u = 0.50624 1.65356I
a = 0.039303 + 0.997212I
b = 0.50624 1.65356I
0.51665 9.12206I 0
u = 0.35393 + 1.72346I
a = 0.116049 0.916399I
b = 0.35393 + 1.72346I
3.78322 6.15036I 0
u = 0.35393 1.72346I
a = 0.116049 + 0.916399I
b = 0.35393 1.72346I
3.78322 + 6.15036I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.62895 + 1.78797I
a = 0.052590 0.928175I
b = 0.62895 + 1.78797I
5.5259 + 15.3858I 0
u = 0.62895 1.78797I
a = 0.052590 + 0.928175I
b = 0.62895 1.78797I
5.5259 15.3858I 0
u = 0.57825 + 1.81066I
a = 0.026177 0.911601I
b = 0.57825 + 1.81066I
6.63527 9.39925I 0
u = 0.57825 1.81066I
a = 0.026177 + 0.911601I
b = 0.57825 1.81066I
6.63527 + 9.39925I 0
u = 0.16208 + 1.89611I
a = 0.245895 0.654376I
b = 0.16208 + 1.89611I
9.28183 2.22011I 0
u = 0.16208 1.89611I
a = 0.245895 + 0.654376I
b = 0.16208 1.89611I
9.28183 + 2.22011I 0
u = 0.03905 + 1.92499I
a = 0.203229 0.694596I
b = 0.03905 + 1.92499I
9.65564 4.10797I 0
u = 0.03905 1.92499I
a = 0.203229 + 0.694596I
b = 0.03905 1.92499I
9.65564 + 4.10797I 0
7
II. I
u
2
= hb + u, 5u
16
+ u
15
+ · · · + a 5, u
17
+ 3u
15
+ · · · u + 1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
5
=
1
u
2
a
10
=
5u
16
u
15
+ ··· + 12u + 5
u
a
6
=
5u
16
+ 5u
15
+ ··· + u 16
u
2
+ 1
a
9
=
5u
16
u
15
+ ··· + 11u + 5
u
a
8
=
5u
16
u
15
+ ··· + 11u + 5
u
16
3u
14
+ ··· + 3u + 1
a
12
=
12u
16
+ 4u
15
+ ··· 17u 11
u
16
3u
14
+ ··· + 5u + 1
a
11
=
11u
16
+ 4u
15
+ ··· 12u 10
u
16
3u
14
+ ··· + 5u + 1
a
3
=
10u
16
11u
15
+ ··· 5u + 23
u
16
+ u
15
+ ··· + 13u
2
6
a
2
=
16u
16
10u
15
+ ··· + 13u + 29
23u
16
10u
15
+ ··· + 22u + 18
a
7
=
9u
16
+ 13u
15
+ ··· + 12u 21
u
16
+ 2u
15
+ ··· + 3u + 4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 45u
16
+ 45u
15
+ 162u
14
+ 117u
13
128u
12
110u
11
304u
10
68u
9
+ 533u
8
+ 181u
7
36u
6
69u
5
426u
4
+ u
3
+ 315u
2
u 77
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
17
6u
16
+ ··· 18u
2
+ 1
c
2
u
17
+ 3u
15
+ ··· + 2u 1
c
3
, c
10
u
17
u
16
+ ··· + 3u
2
+ 1
c
4
, c
9
u
17
+ 3u
15
+ ··· u + 1
c
5
, c
11
u
17
+ u
16
+ ··· 3u
2
1
c
7
u
17
+ 3u
15
+ ··· + 2u + 1
c
8
u
17
u
15
+ ··· + 2u + 1
c
12
u
17
6u
16
+ ··· + 2u + 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
17
+ 14y
16
+ ··· + 36y 1
c
2
, c
7
y
17
+ 6y
16
+ ··· + 18y
2
1
c
3
, c
5
, c
10
c
11
y
17
11y
16
+ ··· 6y 1
c
4
, c
9
y
17
+ 6y
16
+ ··· + 11y 1
c
8
y
17
2y
16
+ ··· 2y 1
c
12
y
17
14y
16
+ ··· + 8y 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.944344 + 0.346033I
a = 0.447652 0.512355I
b = 0.944344 0.346033I
1.03956 1.63645I 7.74530 + 1.55839I
u = 0.944344 0.346033I
a = 0.447652 + 0.512355I
b = 0.944344 + 0.346033I
1.03956 + 1.63645I 7.74530 1.55839I
u = 0.864585 + 0.379164I
a = 0.583910 0.698557I
b = 0.864585 0.379164I
2.10829 + 7.37198I 8.93029 5.91248I
u = 0.864585 0.379164I
a = 0.583910 + 0.698557I
b = 0.864585 + 0.379164I
2.10829 7.37198I 8.93029 + 5.91248I
u = 0.037669 + 1.084830I
a = 0.11324 + 1.69832I
b = 0.037669 1.084830I
5.48501 2.53801I 5.54821 + 3.82197I
u = 0.037669 1.084830I
a = 0.11324 1.69832I
b = 0.037669 + 1.084830I
5.48501 + 2.53801I 5.54821 3.82197I
u = 0.878247
a = 0.337583
b = 0.878247
3.63803 10.5770
u = 0.791817 + 0.212409I
a = 0.104106 0.968399I
b = 0.791817 0.212409I
7.18587 + 1.52748I 14.7986 1.1989I
u = 0.791817 0.212409I
a = 0.104106 + 0.968399I
b = 0.791817 + 0.212409I
7.18587 1.52748I 14.7986 + 1.1989I
u = 0.714015 + 0.074924I
a = 1.185250 0.688415I
b = 0.714015 0.074924I
3.09442 0.79036I 5.12753 0.89506I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.714015 0.074924I
a = 1.185250 + 0.688415I
b = 0.714015 + 0.074924I
3.09442 + 0.79036I 5.12753 + 0.89506I
u = 0.704468 + 0.121688I
a = 1.00603 1.10552I
b = 0.704468 0.121688I
3.93940 4.16488I 8.44169 + 5.58918I
u = 0.704468 0.121688I
a = 1.00603 + 1.10552I
b = 0.704468 + 0.121688I
3.93940 + 4.16488I 8.44169 5.58918I
u = 0.145937 + 1.315070I
a = 0.223886 + 1.159350I
b = 0.145937 1.315070I
2.99124 + 0.77564I 5.07814 + 0.88442I
u = 0.145937 1.315070I
a = 0.223886 1.159350I
b = 0.145937 + 1.315070I
2.99124 0.77564I 5.07814 0.88442I
u = 0.07978 + 1.85790I
a = 0.043035 + 0.691466I
b = 0.07978 1.85790I
9.06537 + 3.10101I 4.13830 3.69699I
u = 0.07978 1.85790I
a = 0.043035 0.691466I
b = 0.07978 + 1.85790I
9.06537 3.10101I 4.13830 + 3.69699I
12
III. I
u
3
=
h1.91×10
76
u
35
+2.50×10
76
u
34
+· · ·+5.35×10
78
b7.63×10
78
, 4.20×10
66
u
35
+
2.74 × 10
66
u
34
+ · · · + 1.04 × 10
69
a 1.38 × 10
70
, u
36
+ u
35
+ · · · 2560u + 121i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
5
=
1
u
2
a
10
=
0.00403497u
35
0.00263353u
34
+ ··· 21.5564u + 13.2691
0.00356648u
35
0.00468188u
34
+ ··· 4.09637u + 1.42748
a
6
=
0.00793734u
35
0.00974330u
34
+ ··· 11.1664u + 16.8486
0.00140145u
35
+ 0.000977635u
34
+ ··· + 2.93952u + 1.48823
a
9
=
0.00760145u
35
0.00731541u
34
+ ··· 25.6527u + 14.6965
0.00356648u
35
0.00468188u
34
+ ··· 4.09637u + 1.42748
a
8
=
0.00760145u
35
0.00731541u
34
+ ··· 25.6527u + 14.6965
0.00295648u
35
0.00407097u
34
+ ··· 2.44432u + 1.39287
a
12
=
0.00422949u
35
+ 0.00563094u
34
+ ··· + 7.10480u 7.88797
0.00138215u
35
+ 0.000407795u
34
+ ··· + 8.54688u 1.12999
a
11
=
0.00561164u
35
+ 0.00603873u
34
+ ··· + 15.6517u 9.01796
0.00138215u
35
+ 0.000407795u
34
+ ··· + 8.54688u 1.12999
a
3
=
0.00402228u
35
+ 0.00505346u
34
+ ··· + 1.24783u 5.21219
0.00145650u
35
0.0000469624u
34
+ ··· 9.38769u 0.107969
a
2
=
0.00308517u
35
0.00518618u
34
+ ··· + 5.15203u 1.65668
0.00104331u
35
+ 0.000744287u
34
+ ··· + 5.57828u 0.357559
a
7
=
0.00764445u
35
0.00742781u
34
+ ··· 19.3477u + 13.7010
0.00208970u
35
+ 0.00142347u
34
+ ··· + 4.84956u + 1.05281
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0117322u
35
0.0177224u
34
+ ··· + 5.37839u + 0.170272
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
(u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
4
c
2
, c
7
(u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1)
4
c
3
, c
5
, c
10
c
11
u
36
+ u
35
+ ··· 356u 31
c
4
, c
9
u
36
u
35
+ ··· + 2560u + 121
c
8
(u
9
+ 5u
8
+ 12u
7
+ 15u
6
+ 9u
5
u
4
4u
3
2u
2
+ u + 1)
4
c
12
(u
2
u 1)
18
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
4
c
2
, c
7
(y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
4
c
3
, c
5
, c
10
c
11
y
36
13y
35
+ ··· 49856y + 961
c
4
, c
9
y
36
+ 23y
35
+ ··· 5714344y + 14641
c
8
(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
4
c
12
(y
2
3y + 1)
18
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.780953 + 0.638783I
a = 0.474153 0.387835I
b = 1.009880 + 0.558025I
3.33090 + 2.45442I 5.67208 2.91298I
u = 0.780953 0.638783I
a = 0.474153 + 0.387835I
b = 1.009880 0.558025I
3.33090 2.45442I 5.67208 + 2.91298I
u = 0.132026 + 0.843379I
a = 0.29315 + 1.87262I
b = 0.044584 1.300520I
4.56478 + 2.45442I 5.67208 2.91298I
u = 0.132026 0.843379I
a = 0.29315 1.87262I
b = 0.044584 + 1.300520I
4.56478 2.45442I 5.67208 + 2.91298I
u = 1.009880 + 0.558025I
a = 0.468838 0.259064I
b = 0.780953 + 0.638783I
3.33090 + 2.45442I 5.67208 2.91298I
u = 1.009880 0.558025I
a = 0.468838 + 0.259064I
b = 0.780953 0.638783I
3.33090 2.45442I 5.67208 + 2.91298I
u = 0.358853 + 0.748546I
a = 0.321847 0.671353I
b = 1.53825 + 0.06109I
0.34972 7.08493I 2.42320 + 5.91335I
u = 0.358853 0.748546I
a = 0.321847 + 0.671353I
b = 1.53825 0.06109I
0.34972 + 7.08493I 2.42320 5.91335I
u = 0.417017 + 0.614890I
a = 0.466909 0.688456I
b = 1.48241 + 0.01866I
0.423507 + 1.336170I 0.715907 0.701750I
u = 0.417017 0.614890I
a = 0.466909 + 0.688456I
b = 1.48241 0.01866I
0.423507 1.336170I 0.715907 + 0.701750I
16
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.28654
a = 0.480385
b = 0.0498474
2.74940 0.652350
u = 0.044584 + 1.300520I
a = 0.042601 + 1.242690I
b = 0.132026 0.843379I
4.56478 2.45442I 5.67208 + 2.91298I
u = 0.044584 1.300520I
a = 0.042601 1.242690I
b = 0.132026 + 0.843379I
4.56478 + 2.45442I 5.67208 2.91298I
u = 0.491968 + 1.251860I
a = 0.439989 + 1.119590I
b = 0.01428 1.56727I
2.16441 2.09337I 8.51499 + 4.16283I
u = 0.491968 1.251860I
a = 0.439989 1.119590I
b = 0.01428 + 1.56727I
2.16441 + 2.09337I 8.51499 4.16283I
u = 1.357600 + 0.226779I
a = 0.442882 0.073981I
b = 0.106990 + 0.598986I
5.73128 2.09337I 8.51499 + 4.16283I
u = 1.357600 0.226779I
a = 0.442882 + 0.073981I
b = 0.106990 0.598986I
5.73128 + 2.09337I 8.51499 4.16283I
u = 0.106990 + 0.598986I
a = 0.178600 0.999899I
b = 1.357600 + 0.226779I
5.73128 2.09337I 8.51499 + 4.16283I
u = 0.106990 0.598986I
a = 0.178600 + 0.999899I
b = 1.357600 0.226779I
5.73128 + 2.09337I 8.51499 4.16283I
u = 1.48241 + 0.01866I
a = 0.416845 0.005247I
b = 0.417017 + 0.614890I
0.423507 + 1.336170I 0.715907 0.701750I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.48241 0.01866I
a = 0.416845 + 0.005247I
b = 0.417017 0.614890I
0.423507 1.336170I 0.715907 + 0.701750I
u = 0.25523 + 1.49501I
a = 0.179535 + 1.051640I
b = 0.25523 1.49501I
5.14629 60.652349 + 0.10I
u = 0.25523 1.49501I
a = 0.179535 1.051640I
b = 0.25523 + 1.49501I
5.14629 60.652349 + 0.10I
u = 1.53825 + 0.06109I
a = 0.401145 0.015931I
b = 0.358853 + 0.748546I
0.34972 7.08493I 2.42320 + 5.91335I
u = 1.53825 0.06109I
a = 0.401145 + 0.015931I
b = 0.358853 0.748546I
0.34972 + 7.08493I 2.42320 5.91335I
u = 0.01428 + 1.56727I
a = 0.009404 + 1.032300I
b = 0.491968 1.251860I
2.16441 + 2.09337I 8.51499 4.16283I
u = 0.01428 1.56727I
a = 0.009404 1.032300I
b = 0.491968 + 1.251860I
2.16441 2.09337I 8.51499 + 4.16283I
u = 0.68303 + 1.50001I
a = 0.406822 + 0.893434I
b = 0.04160 1.80927I
7.54597 7.08493I 2.42320 + 5.91335I
u = 0.68303 1.50001I
a = 0.406822 0.893434I
b = 0.04160 + 1.80927I
7.54597 + 7.08493I 2.42320 5.91335I
u = 0.61176 + 1.54868I
a = 0.357003 + 0.903756I
b = 0.11375 1.79068I
8.31919 + 1.33617I 0
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.61176 1.54868I
a = 0.357003 0.903756I
b = 0.11375 + 1.79068I
8.31919 1.33617I 0
u = 0.11375 + 1.79068I
a = 0.057170 + 0.899955I
b = 0.61176 1.54868I
8.31919 1.33617I 0
u = 0.11375 1.79068I
a = 0.057170 0.899955I
b = 0.61176 + 1.54868I
8.31919 + 1.33617I 0
u = 0.04160 + 1.80927I
a = 0.020553 + 0.893830I
b = 0.68303 1.50001I
7.54597 + 7.08493I 4.00000 5.91335I
u = 0.04160 1.80927I
a = 0.020553 0.893830I
b = 0.68303 + 1.50001I
7.54597 7.08493I 4.00000 + 5.91335I
u = 0.0498474
a = 12.3985
b = 1.28654
2.74940 0.652350
19
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
(u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
4
· (u
17
6u
16
+ ··· 18u
2
+ 1)(u
28
+ 9u
27
+ ··· + 84u + 16)
c
2
(u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1)
4
· (u
17
+ 3u
15
+ ··· + 2u 1)(u
28
+ 5u
27
+ ··· + 2u + 4)
c
3
, c
10
(u
17
u
16
+ ··· + 3u
2
+ 1)(u
28
+ u
27
+ ··· + 4u + 1)
· (u
36
+ u
35
+ ··· 356u 31)
c
4
, c
9
(u
17
+ 3u
15
+ ··· u + 1)(u
28
+ 23u
26
+ ··· + 3u + 1)
· (u
36
u
35
+ ··· + 2560u + 121)
c
5
, c
11
(u
17
+ u
16
+ ··· 3u
2
1)(u
28
+ u
27
+ ··· + 4u + 1)
· (u
36
+ u
35
+ ··· 356u 31)
c
7
(u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1)
4
· (u
17
+ 3u
15
+ ··· + 2u + 1)(u
28
+ 5u
27
+ ··· + 2u + 4)
c
8
(u
9
+ 5u
8
+ 12u
7
+ 15u
6
+ 9u
5
u
4
4u
3
2u
2
+ u + 1)
4
· (u
17
u
15
+ ··· + 2u + 1)(u
28
25u
27
+ ··· 98862u + 9028)
c
12
((u
2
u 1)
18
)(u
17
6u
16
+ ··· + 2u + 1)
· (u
28
+ 21u
27
+ ··· + 3584u + 512)
20
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
4
· (y
17
+ 14y
16
+ ··· + 36y 1)(y
28
+ 21y
27
+ ··· + 2064y + 256)
c
2
, c
7
(y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
4
· (y
17
+ 6y
16
+ ··· + 18y
2
1)(y
28
+ 9y
27
+ ··· + 84y + 16)
c
3
, c
5
, c
10
c
11
(y
17
11y
16
+ ··· 6y 1)(y
28
11y
27
+ ··· 6y + 1)
· (y
36
13y
35
+ ··· 49856y + 961)
c
4
, c
9
(y
17
+ 6y
16
+ ··· + 11y 1)(y
28
+ 46y
27
+ ··· + 49y + 1)
· (y
36
+ 23y
35
+ ··· 5714344y + 14641)
c
8
(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
4
· (y
17
2y
16
+ ··· 2y 1)
· (y
28
3y
27
+ ··· + 785869044y + 81504784)
c
12
((y
2
3y + 1)
18
)(y
17
14y
16
+ ··· + 8y 1)
· (y
28
17y
27
+ ··· + 4456448y + 262144)
21