12n
0624
(K12n
0624
)
A knot diagram
1
Linearized knot diagam
3 8 11 8 3 11 2 12 4 7 9 5
Solving Sequence
8,12 3,9
2 1 7 11 4 5 6 10
c
8
c
2
c
1
c
7
c
11
c
3
c
4
c
5
c
10
c
6
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= hu
16
u
15
+ 6u
14
5u
13
+ 13u
12
10u
11
+ 8u
10
9u
9
9u
8
4u
7
9u
6
+ 8u
4
+ 2u
3
+ 9u
2
+ b + u 1,
u
16
3u
15
+ ··· + a + 5, u
18
2u
17
+ ··· 8u + 1i
I
u
2
= hu
11
+ 2u
10
+ 6u
9
+ 8u
8
+ 12u
7
+ 12u
6
+ 9u
5
+ 6u
4
u
2
+ b 2u 2,
u
11
3u
10
10u
9
18u
8
30u
7
35u
6
33u
5
23u
4
6u
3
+ 4u
2
+ a + 9u + 6,
u
12
+ 3u
11
+ 9u
10
+ 16u
9
+ 25u
8
+ 30u
7
+ 28u
6
+ 21u
5
+ 8u
4
u
3
5u
2
5u 1i
* 2 irreducible components of dim
C
= 0, with total 30 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
16
u
15
+ · · · + b 1, u
16
3u
15
+ · · · + a + 5, u
18
2u
17
+ · · · 8u + 1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
3
=
u
16
+ 3u
15
+ ··· + 18u 5
u
16
+ u
15
+ ··· u + 1
a
9
=
1
u
2
a
2
=
2u
16
+ 4u
15
+ ··· + 17u 4
u
16
+ u
15
+ ··· u + 1
a
1
=
u
15
+ u
14
+ ··· 10u + 1
u
16
u
15
+ ··· + 3u
3
+ 10u
2
a
7
=
u
17
5u
15
+ ··· + 5u + 1
u
16
+ u
15
+ ··· 11u
2
+ u
a
11
=
u
u
3
+ u
a
4
=
u
17
2u
16
+ ··· + 19u 5
u
17
+ u
16
+ ··· 9u + 2
a
5
=
2u
17
3u
16
+ ··· + 28u 7
u
17
+ u
16
+ ··· 9u + 2
a
6
=
u
16
2u
15
+ ··· 6u 1
u
17
u
16
+ ··· + 7u 1
a
10
=
u
17
+ u
16
+ ··· 4u + 1
u
16
+ u
15
+ ··· + 7u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
17
3u
16
+ 19u
15
23u
14
+ 70u
13
72u
12
+ 124u
11
114u
10
+
89u
9
89u
8
15u
7
26u
6
27u
5
2u
4
+ 51u
3
15u
2
+ 50u 24
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
18
+ 14u
17
+ ··· + 21504u + 4096
c
2
, c
7
u
18
16u
17
+ ··· + 224u 64
c
3
, c
6
, c
10
u
18
+ 2u
17
+ ··· 2u 1
c
4
, c
12
u
18
+ 3u
17
+ ··· 2u 1
c
5
u
18
5u
17
+ ··· 4u + 1
c
8
, c
11
u
18
+ 2u
17
+ ··· + 8u + 1
c
9
u
18
u
17
+ ··· 120u 61
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
18
+ 82y
17
+ ··· 437256192y + 16777216
c
2
, c
7
y
18
14y
17
+ ··· 21504y + 4096
c
3
, c
6
, c
10
y
18
+ 28y
17
+ ··· 18y + 1
c
4
, c
12
y
18
+ 35y
17
+ ··· + 20y + 1
c
5
y
18
45y
17
+ ··· 20y + 1
c
8
, c
11
y
18
+ 14y
17
+ ··· 32y + 1
c
9
y
18
+ 33y
17
+ ··· + 24762y + 3721
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.957035 + 0.038927I
a = 1.29444 2.14220I
b = 1.52646 + 1.38753I
12.15720 + 5.50571I 6.58833 2.14870I
u = 0.957035 0.038927I
a = 1.29444 + 2.14220I
b = 1.52646 1.38753I
12.15720 5.50571I 6.58833 + 2.14870I
u = 0.292699 + 1.060130I
a = 0.130715 0.442861I
b = 0.090901 + 0.653348I
0.84836 1.94165I 6.35139 + 2.74428I
u = 0.292699 1.060130I
a = 0.130715 + 0.442861I
b = 0.090901 0.653348I
0.84836 + 1.94165I 6.35139 2.74428I
u = 0.074993 + 1.132910I
a = 0.751791 + 0.803103I
b = 0.794717 0.290190I
3.55462 + 1.02828I 12.61847 1.28084I
u = 0.074993 1.132910I
a = 0.751791 0.803103I
b = 0.794717 + 0.290190I
3.55462 1.02828I 12.61847 + 1.28084I
u = 0.796441 + 0.291195I
a = 0.151574 + 0.889968I
b = 0.775836 0.472537I
1.24471 1.98200I 5.60868 + 9.18970I
u = 0.796441 0.291195I
a = 0.151574 0.889968I
b = 0.775836 + 0.472537I
1.24471 + 1.98200I 5.60868 9.18970I
u = 0.147448 + 1.249270I
a = 1.46732 1.39599I
b = 1.62783 + 0.04234I
11.88260 + 2.10947I 15.7034 5.8224I
u = 0.147448 1.249270I
a = 1.46732 + 1.39599I
b = 1.62783 0.04234I
11.88260 2.10947I 15.7034 + 5.8224I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.490413 + 1.272180I
a = 1.140910 + 0.046544I
b = 1.42593 1.40587I
8.34549 0.36039I 9.48611 0.73252I
u = 0.490413 1.272180I
a = 1.140910 0.046544I
b = 1.42593 + 1.40587I
8.34549 + 0.36039I 9.48611 + 0.73252I
u = 0.458123 + 1.327850I
a = 0.80670 2.00900I
b = 1.59701 + 1.33472I
7.89248 + 10.55150I 10.01468 4.70572I
u = 0.458123 1.327850I
a = 0.80670 + 2.00900I
b = 1.59701 1.33472I
7.89248 10.55150I 10.01468 + 4.70572I
u = 0.35310 + 1.38486I
a = 0.684948 + 0.964946I
b = 1.194280 0.456860I
4.04162 6.18627I 15.0481 + 5.4779I
u = 0.35310 1.38486I
a = 0.684948 0.964946I
b = 1.194280 + 0.456860I
4.04162 + 6.18627I 15.0481 5.4779I
u = 0.443581
a = 1.93499
b = 1.59894
8.07946 1.20520
u = 0.184865
a = 1.95591
b = 0.485984
0.676311 14.9570
6
II.
I
u
2
= hu
11
+2u
10
+· · ·+b2, u
11
3u
10
+· · ·+a+6, u
12
+3u
11
+· · ·5u1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
3
=
u
11
+ 3u
10
+ ··· 9u 6
u
11
2u
10
6u
9
8u
8
12u
7
12u
6
9u
5
6u
4
+ u
2
+ 2u + 2
a
9
=
1
u
2
a
2
=
u
10
+ 4u
9
+ 10u
8
+ 18u
7
+ 23u
6
+ 24u
5
+ 17u
4
+ 6u
3
3u
2
7u 4
u
11
2u
10
6u
9
8u
8
12u
7
12u
6
9u
5
6u
4
+ u
2
+ 2u + 2
a
1
=
2u
11
6u
10
+ ··· + 14u + 10
u
10
2u
9
5u
8
5u
7
5u
6
2u
5
+ 2u
4
+ 3u
3
+ 4u
2
+ u 2
a
7
=
u
11
5u
10
+ ··· + 15u + 8
u
10
2u
9
5u
8
6u
7
6u
6
5u
5
+ u
3
+ 3u
2
+ 2u 2
a
11
=
u
u
3
+ u
a
4
=
u
11
+ 4u
10
+ ··· 10u 6
u
10
+ 2u
9
+ 5u
8
+ 6u
7
+ 6u
6
+ 5u
5
u
3
3u
2
2u + 1
a
5
=
u
11
+ 3u
10
+ ··· 8u 7
u
10
+ 2u
9
+ 5u
8
+ 6u
7
+ 6u
6
+ 5u
5
u
3
3u
2
2u + 1
a
6
=
u
11
4u
10
+ ··· + 14u + 8
u
11
+ 2u
10
+ 6u
9
+ 8u
8
+ 12u
7
+ 12u
6
+ 9u
5
+ 6u
4
u
2
2u 3
a
10
=
3u
11
+ 8u
10
+ ··· 5u 4
u
10
4u
9
+ ··· + 7u + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 7u
11
+ 15u
10
+ 48u
9
+ 70u
8
+ 112u
7
+ 121u
6
+ 105u
5
+ 81u
4
+ 18u
3
2u
2
21u 29
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
12
14u
11
+ ··· 67u + 9
c
2
u
12
+ 2u
11
+ ··· u + 3
c
3
, c
10
u
12
u
11
2u
10
u
9
+ 2u
8
+ 4u
7
2u
6
+ 3u
5
3u
4
+ 4u
3
2u
2
+ u 1
c
4
, c
12
u
12
+ 2u
11
u
10
u
9
+ 6u
8
3u
7
+ u
6
+ 5u
5
5u
4
+ 7u
3
5u
2
+ 3u 1
c
5
u
12
+ 14u
11
+ ··· + 3u + 1
c
6
u
12
+ u
11
2u
10
+ u
9
+ 2u
8
4u
7
2u
6
3u
5
3u
4
4u
3
2u
2
u 1
c
7
u
12
2u
11
+ ··· + u + 3
c
8
u
12
+ 3u
11
+ ··· 5u 1
c
9
u
12
2u
10
6u
9
+ 13u
8
+ u
7
+ 2u
6
9u
5
8u
4
+ 9u
3
4u
2
+ 5u 3
c
11
u
12
3u
11
+ ··· + 5u 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
12
22y
11
+ ··· + 29y + 81
c
2
, c
7
y
12
14y
11
+ ··· 67y + 9
c
3
, c
6
, c
10
y
12
5y
11
+ ··· + 3y + 1
c
4
, c
12
y
12
6y
11
+ ··· + y + 1
c
5
y
12
30y
11
+ ··· + 21y + 1
c
8
, c
11
y
12
+ 9y
11
+ ··· 15y + 1
c
9
y
12
4y
11
+ ··· y + 9
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.945559 + 0.176012I
a = 0.384985 + 0.661564I
b = 0.934205 0.378092I
1.63828 1.45323I 1.054104 + 0.917158I
u = 0.945559 0.176012I
a = 0.384985 0.661564I
b = 0.934205 + 0.378092I
1.63828 + 1.45323I 1.054104 0.917158I
u = 0.083486 + 1.161420I
a = 1.36019 1.88104I
b = 1.71485 + 0.22346I
11.61070 1.25522I 12.48094 2.13033I
u = 0.083486 1.161420I
a = 1.36019 + 1.88104I
b = 1.71485 0.22346I
11.61070 + 1.25522I 12.48094 + 2.13033I
u = 0.262959 + 1.174910I
a = 0.73282 + 1.30130I
b = 0.886932 0.447310I
8.28259 + 3.18829I 11.15779 3.99090I
u = 0.262959 1.174910I
a = 0.73282 1.30130I
b = 0.886932 + 0.447310I
8.28259 3.18829I 11.15779 + 3.99090I
u = 0.451022 + 1.172390I
a = 0.0134217 + 0.1288200I
b = 0.609088 + 0.508190I
1.38760 3.47878I 6.82613 + 4.40874I
u = 0.451022 1.172390I
a = 0.0134217 0.1288200I
b = 0.609088 0.508190I
1.38760 + 3.47878I 6.82613 4.40874I
u = 0.612728
a = 2.21290
b = 0.702300
4.82802 5.83830
u = 0.45888 + 1.40396I
a = 0.414406 + 0.891813I
b = 1.172970 0.328171I
3.32828 6.54831I 6.31944 + 10.84380I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.45888 1.40396I
a = 0.414406 0.891813I
b = 1.172970 + 0.328171I
3.32828 + 6.54831I 6.31944 10.84380I
u = 0.260752
a = 3.95615
b = 1.52667
8.44787 23.7010
11
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
12
14u
11
+ ··· 67u + 9)(u
18
+ 14u
17
+ ··· + 21504u + 4096)
c
2
(u
12
+ 2u
11
+ ··· u + 3)(u
18
16u
17
+ ··· + 224u 64)
c
3
, c
10
(u
12
u
11
2u
10
u
9
+ 2u
8
+ 4u
7
2u
6
+ 3u
5
3u
4
+ 4u
3
2u
2
+ u 1)
· (u
18
+ 2u
17
+ ··· 2u 1)
c
4
, c
12
(u
12
+ 2u
11
u
10
u
9
+ 6u
8
3u
7
+ u
6
+ 5u
5
5u
4
+ 7u
3
5u
2
+ 3u 1)
· (u
18
+ 3u
17
+ ··· 2u 1)
c
5
(u
12
+ 14u
11
+ ··· + 3u + 1)(u
18
5u
17
+ ··· 4u + 1)
c
6
(u
12
+ u
11
2u
10
+ u
9
+ 2u
8
4u
7
2u
6
3u
5
3u
4
4u
3
2u
2
u 1)
· (u
18
+ 2u
17
+ ··· 2u 1)
c
7
(u
12
2u
11
+ ··· + u + 3)(u
18
16u
17
+ ··· + 224u 64)
c
8
(u
12
+ 3u
11
+ ··· 5u 1)(u
18
+ 2u
17
+ ··· + 8u + 1)
c
9
(u
12
2u
10
6u
9
+ 13u
8
+ u
7
+ 2u
6
9u
5
8u
4
+ 9u
3
4u
2
+ 5u 3)
· (u
18
u
17
+ ··· 120u 61)
c
11
(u
12
3u
11
+ ··· + 5u 1)(u
18
+ 2u
17
+ ··· + 8u + 1)
12
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
12
22y
11
+ ··· + 29y + 81)
· (y
18
+ 82y
17
+ ··· 437256192y + 16777216)
c
2
, c
7
(y
12
14y
11
+ ··· 67y + 9)(y
18
14y
17
+ ··· 21504y + 4096)
c
3
, c
6
, c
10
(y
12
5y
11
+ ··· + 3y + 1)(y
18
+ 28y
17
+ ··· 18y + 1)
c
4
, c
12
(y
12
6y
11
+ ··· + y + 1)(y
18
+ 35y
17
+ ··· + 20y + 1)
c
5
(y
12
30y
11
+ ··· + 21y + 1)(y
18
45y
17
+ ··· 20y + 1)
c
8
, c
11
(y
12
+ 9y
11
+ ··· 15y + 1)(y
18
+ 14y
17
+ ··· 32y + 1)
c
9
(y
12
4y
11
+ ··· y + 9)(y
18
+ 33y
17
+ ··· + 24762y + 3721)
13