11a
22
(K11a
22
)
A knot diagram
1
Linearized knot diagam
4 1 7 2 10 3 6 11 5 8 9
Solving Sequence
3,6
7 4
8,11
9 1 2 10 5
c
6
c
3
c
7
c
8
c
11
c
2
c
10
c
5
c
1
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h2.20922 × 10
53
u
57
+ 5.38010 × 10
53
u
56
+ ··· + 1.93523 × 10
52
b 1.93917 × 10
54
,
8.75242 × 10
53
u
57
+ 2.15695 × 10
54
u
56
+ ··· + 3.87047 × 10
52
a 7.51888 × 10
54
, u
58
+ 2u
57
+ ··· 20u + 4i
I
u
2
= h−u
2
+ b, u
5
+ 2u
3
+ a 2u, u
6
+ u
5
u
4
2u
3
+ u + 1i
I
v
1
= ha, b + v + 2, v
2
+ 3v + 1i
* 3 irreducible components of dim
C
= 0, with total 66 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h2.21×10
53
u
57
+5.38×10
53
u
56
+· · ·+1.94×10
52
b1.94×10
54
, 8.75×10
53
u
57
+
2.16 × 10
54
u
56
+ · · · + 3.87 × 10
52
a 7.52 × 10
54
, u
58
+ 2u
57
+ · · · 20u + 4i
(i) Arc colorings
a
3
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
4
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
2
a
11
=
22.6133u
57
55.7283u
56
+ ··· 545.664u + 194.263
11.4158u
57
27.8007u
56
+ ··· 276.503u + 100.203
a
9
=
5.51590u
57
13.4288u
56
+ ··· 123.425u + 47.3451
23.7116u
57
+ 58.8709u
56
+ ··· + 589.977u 207.708
a
1
=
4.78464u
57
12.0436u
56
+ ··· 122.072u + 39.9544
24.1900u
57
+ 59.1862u
56
+ ··· + 587.084u 206.905
a
2
=
10.8746u
57
27.0241u
56
+ ··· 269.732u + 91.6352
19.4239u
57
+ 47.5510u
56
+ ··· + 471.075u 166.426
a
10
=
33.5809u
57
82.6520u
56
+ ··· 817.229u + 291.314
8.47974u
57
20.5966u
56
+ ··· 205.705u + 74.9209
a
5
=
28.9747u
57
71.2298u
56
+ ··· 709.155u + 246.859
17.5651u
57
43.1972u
56
+ ··· 437.372u + 153.783
a
5
=
28.9747u
57
71.2298u
56
+ ··· 709.155u + 246.859
17.5651u
57
43.1972u
56
+ ··· 437.372u + 153.783
(ii) Obstruction class = 1
(iii) Cusp Shapes = 11.5795u
57
+ 27.4881u
56
+ ··· + 286.625u 124.569
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
58
4u
57
+ ··· 14u + 1
c
2
u
58
+ 32u
57
+ ··· + 94u + 1
c
3
, c
6
u
58
2u
57
+ ··· + 20u + 4
c
5
, c
9
u
58
+ 2u
57
+ ··· + 128u + 64
c
7
u
58
18u
57
+ ··· 360u + 16
c
8
, c
10
, c
11
u
58
8u
57
+ ··· 4u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
58
32y
57
+ ··· 94y + 1
c
2
y
58
8y
57
+ ··· 7838y + 1
c
3
, c
6
y
58
18y
57
+ ··· 360y + 16
c
5
, c
9
y
58
42y
57
+ ··· 8192y + 4096
c
7
y
58
+ 42y
57
+ ··· 33056y + 256
c
8
, c
10
, c
11
y
58
60y
57
+ ··· 36y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.751278 + 0.687165I
a = 0.397223 + 0.633477I
b = 0.489389 + 0.795565I
2.18920 + 0.10128I 7.14023 + 0.I
u = 0.751278 0.687165I
a = 0.397223 0.633477I
b = 0.489389 0.795565I
2.18920 0.10128I 7.14023 + 0.I
u = 0.938205 + 0.408426I
a = 0.231074 + 0.260146I
b = 0.593325 + 0.623788I
1.56893 1.49125I 1.52605 + 1.85258I
u = 0.938205 0.408426I
a = 0.231074 0.260146I
b = 0.593325 0.623788I
1.56893 + 1.49125I 1.52605 1.85258I
u = 0.975459
a = 1.52269
b = 0.110488
8.12166 10.1040
u = 1.025320 + 0.037106I
a = 0.086100 + 0.547603I
b = 0.554847 0.036376I
2.76529 + 0.01343I 61.057430 + 0.10I
u = 1.025320 0.037106I
a = 0.086100 0.547603I
b = 0.554847 + 0.036376I
2.76529 0.01343I 61.057430 + 0.10I
u = 0.141484 + 1.046590I
a = 1.95002 0.42418I
b = 0.327448 0.475424I
6.51259 2.28009I 10.96046 + 3.19134I
u = 0.141484 1.046590I
a = 1.95002 + 0.42418I
b = 0.327448 + 0.475424I
6.51259 + 2.28009I 10.96046 3.19134I
u = 0.907614 + 0.233881I
a = 0.452411 + 0.038868I
b = 1.68026 1.11227I
1.05945 3.12017I 5.50127 + 4.47326I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.907614 0.233881I
a = 0.452411 0.038868I
b = 1.68026 + 1.11227I
1.05945 + 3.12017I 5.50127 4.47326I
u = 0.766366 + 0.768934I
a = 0.43828 + 2.14321I
b = 1.37901 + 2.34528I
13.34930 0.72037I 12.98227 + 3.28415I
u = 0.766366 0.768934I
a = 0.43828 2.14321I
b = 1.37901 2.34528I
13.34930 + 0.72037I 12.98227 3.28415I
u = 1.056160 + 0.263793I
a = 0.226907 0.684770I
b = 0.294684 0.046749I
2.08472 + 4.56768I 0. 7.20311I
u = 1.056160 0.263793I
a = 0.226907 + 0.684770I
b = 0.294684 + 0.046749I
2.08472 4.56768I 0. + 7.20311I
u = 0.816044 + 0.752910I
a = 1.43375 0.08308I
b = 0.202312 0.820966I
5.71379 1.22939I 0
u = 0.816044 0.752910I
a = 1.43375 + 0.08308I
b = 0.202312 + 0.820966I
5.71379 + 1.22939I 0
u = 0.531681 + 0.702789I
a = 1.041460 0.332937I
b = 0.178506 0.656257I
2.16889 1.07216I 4.64986 + 0.67610I
u = 0.531681 0.702789I
a = 1.041460 + 0.332937I
b = 0.178506 + 0.656257I
2.16889 + 1.07216I 4.64986 0.67610I
u = 0.871904 + 0.708903I
a = 1.62017 1.84549I
b = 0.60927 2.97487I
3.98695 2.71614I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.871904 0.708903I
a = 1.62017 + 1.84549I
b = 0.60927 + 2.97487I
3.98695 + 2.71614I 0
u = 0.646879 + 0.932661I
a = 1.23701 2.00036I
b = 0.50044 2.21446I
9.34785 3.11893I 0
u = 0.646879 0.932661I
a = 1.23701 + 2.00036I
b = 0.50044 + 2.21446I
9.34785 + 3.11893I 0
u = 0.786683 + 0.828955I
a = 2.61581 + 2.03754I
b = 0.16255 + 3.14290I
7.78075 1.40297I 0
u = 0.786683 0.828955I
a = 2.61581 2.03754I
b = 0.16255 3.14290I
7.78075 + 1.40297I 0
u = 0.733599 + 0.883254I
a = 0.012106 0.387354I
b = 0.049160 0.756342I
5.55187 + 4.00580I 0
u = 0.733599 0.883254I
a = 0.012106 + 0.387354I
b = 0.049160 + 0.756342I
5.55187 4.00580I 0
u = 0.844172 + 0.085017I
a = 0.986920 + 0.702481I
b = 1.49717 0.05675I
0.629418 + 0.623631I 5.36343 3.54196I
u = 0.844172 0.085017I
a = 0.986920 0.702481I
b = 1.49717 + 0.05675I
0.629418 0.623631I 5.36343 + 3.54196I
u = 0.959680 + 0.687124I
a = 0.783612 + 0.016039I
b = 0.095816 + 0.597900I
1.54879 + 5.22529I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.959680 0.687124I
a = 0.783612 0.016039I
b = 0.095816 0.597900I
1.54879 5.22529I 0
u = 0.925912 + 0.732408I
a = 0.191499 1.003200I
b = 0.468873 1.260970I
5.37580 4.41103I 0
u = 0.925912 0.732408I
a = 0.191499 + 1.003200I
b = 0.468873 + 1.260970I
5.37580 + 4.41103I 0
u = 1.032960 + 0.608744I
a = 0.192674 0.762403I
b = 0.660062 1.066530I
0.69171 + 6.13139I 0
u = 1.032960 0.608744I
a = 0.192674 + 0.762403I
b = 0.660062 + 1.066530I
0.69171 6.13139I 0
u = 0.970390 + 0.723923I
a = 1.94328 + 0.72453I
b = 0.47039 + 2.60152I
12.71920 4.94560I 0
u = 0.970390 0.723923I
a = 1.94328 0.72453I
b = 0.47039 2.60152I
12.71920 + 4.94560I 0
u = 0.971435 + 0.767699I
a = 1.37396 + 2.61714I
b = 0.85784 + 3.57871I
7.20694 + 7.37757I 0
u = 0.971435 0.767699I
a = 1.37396 2.61714I
b = 0.85784 3.57871I
7.20694 7.37757I 0
u = 0.749801 + 1.013650I
a = 1.42076 + 2.51991I
b = 0.31957 + 2.79288I
12.3578 + 7.9362I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.749801 1.013650I
a = 1.42076 2.51991I
b = 0.31957 2.79288I
12.3578 7.9362I 0
u = 1.260080 + 0.222648I
a = 1.043850 + 0.235063I
b = 1.069910 + 0.809848I
1.33556 1.90763I 0
u = 1.260080 0.222648I
a = 1.043850 0.235063I
b = 1.069910 0.809848I
1.33556 + 1.90763I 0
u = 1.021410 + 0.771092I
a = 0.608745 0.376035I
b = 0.332932 0.745316I
4.65387 10.14070I 0
u = 1.021410 0.771092I
a = 0.608745 + 0.376035I
b = 0.332932 + 0.745316I
4.65387 + 10.14070I 0
u = 0.117607 + 0.695097I
a = 0.967277 0.036072I
b = 0.433545 + 0.151204I
1.14303 1.20148I 5.78859 + 5.55533I
u = 0.117607 0.695097I
a = 0.967277 + 0.036072I
b = 0.433545 0.151204I
1.14303 + 1.20148I 5.78859 5.55533I
u = 1.249040 + 0.401910I
a = 0.605347 0.578787I
b = 0.98878 1.48797I
2.57248 + 7.45358I 0
u = 1.249040 0.401910I
a = 0.605347 + 0.578787I
b = 0.98878 + 1.48797I
2.57248 7.45358I 0
u = 1.073950 + 0.758891I
a = 1.50409 1.45263I
b = 0.04645 2.93251I
8.03060 + 9.32855I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.073950 0.758891I
a = 1.50409 + 1.45263I
b = 0.04645 + 2.93251I
8.03060 9.32855I 0
u = 1.082250 + 0.829438I
a = 1.77158 + 1.93052I
b = 0.11809 + 3.30285I
11.2723 14.6533I 0
u = 1.082250 0.829438I
a = 1.77158 1.93052I
b = 0.11809 3.30285I
11.2723 + 14.6533I 0
u = 0.209439 + 0.468075I
a = 5.64495 + 2.38701I
b = 0.441139 0.581010I
3.24157 + 0.49714I 10.0374 + 15.0443I
u = 0.209439 0.468075I
a = 5.64495 2.38701I
b = 0.441139 + 0.581010I
3.24157 0.49714I 10.0374 15.0443I
u = 0.471619
a = 3.18461
b = 0.472950
2.28699 3.94780
u = 0.459325
a = 0.198494
b = 2.04304
10.2057 4.64730
u = 0.324240
a = 1.64764
b = 0.649452
1.11333 8.96690
10
II. I
u
2
= h−u
2
+ b, u
5
+ 2u
3
+ a 2u, u
6
+ u
5
u
4
2u
3
+ u + 1i
(i) Arc colorings
a
3
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
4
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
2
a
11
=
u
5
2u
3
+ 2u
u
2
a
9
=
u
5
2u
3
u
2
+ 2u + 1
0
a
1
=
u
2
1
u
2
a
2
=
u
5
2u
3
+ u
u
5
u
3
+ u
a
10
=
u
5
2u
3
u
2
+ 2u + 1
0
a
5
=
1
0
a
5
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
5
5u
4
+ u
3
+ 7u
2
+ 4u 12
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
6
+ u
5
u
4
2u
3
+ u + 1
c
2
u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1
c
3
, c
4
u
6
u
5
u
4
+ 2u
3
u + 1
c
5
, c
9
u
6
c
7
u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1
c
8
(u 1)
6
c
10
, c
11
(u + 1)
6
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
6
y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1
c
2
, c
7
y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1
c
5
, c
9
y
6
c
8
, c
10
, c
11
(y 1)
6
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.002190 + 0.295542I
a = 0.686453 + 0.095369I
b = 0.917045 + 0.592379I
0.245672 + 0.924305I 3.44826 0.47256I
u = 1.002190 0.295542I
a = 0.686453 0.095369I
b = 0.917045 0.592379I
0.245672 0.924305I 3.44826 + 0.47256I
u = 0.428243 + 0.664531I
a = 1.91924 + 0.88792I
b = 0.258209 0.569162I
3.53554 + 0.92430I 13.66012 2.42665I
u = 0.428243 0.664531I
a = 1.91924 0.88792I
b = 0.258209 + 0.569162I
3.53554 0.92430I 13.66012 + 2.42665I
u = 1.073950 + 0.558752I
a = 0.232786 0.641391I
b = 0.84116 1.20014I
1.64493 5.69302I 8.89162 + 3.92918I
u = 1.073950 0.558752I
a = 0.232786 + 0.641391I
b = 0.84116 + 1.20014I
1.64493 + 5.69302I 8.89162 3.92918I
14
III. I
v
1
= ha, b + v + 2, v
2
+ 3v + 1i
(i) Arc colorings
a
3
=
v
0
a
6
=
1
0
a
7
=
1
0
a
4
=
v
0
a
8
=
1
0
a
11
=
0
v 2
a
9
=
1
v + 3
a
1
=
v + 2
v + 3
a
2
=
2v + 2
v + 3
a
10
=
v 2
v 2
a
5
=
v 2
v 3
a
5
=
v 2
v 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 21
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
2
c
2
, c
4
(u + 1)
2
c
3
, c
6
, c
7
u
2
c
5
, c
8
u
2
+ u 1
c
9
, c
10
, c
11
u
2
u 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
2
c
3
, c
6
, c
7
y
2
c
5
, c
8
, c
9
c
10
, c
11
y
2
3y + 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.381966
a = 0
b = 1.61803
10.5276 21.0000
v = 2.61803
a = 0
b = 0.618034
2.63189 21.0000
18
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
2
)(u
6
+ u
5
+ ··· + u + 1)(u
58
4u
57
+ ··· 14u + 1)
c
2
(u + 1)
2
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
· (u
58
+ 32u
57
+ ··· + 94u + 1)
c
3
u
2
(u
6
u
5
+ ··· u + 1)(u
58
2u
57
+ ··· + 20u + 4)
c
4
((u + 1)
2
)(u
6
u
5
+ ··· u + 1)(u
58
4u
57
+ ··· 14u + 1)
c
5
u
6
(u
2
+ u 1)(u
58
+ 2u
57
+ ··· + 128u + 64)
c
6
u
2
(u
6
+ u
5
+ ··· + u + 1)(u
58
2u
57
+ ··· + 20u + 4)
c
7
u
2
(u
6
3u
5
+ ··· u + 1)(u
58
18u
57
+ ··· 360u + 16)
c
8
((u 1)
6
)(u
2
+ u 1)(u
58
8u
57
+ ··· 4u + 1)
c
9
u
6
(u
2
u 1)(u
58
+ 2u
57
+ ··· + 128u + 64)
c
10
, c
11
((u + 1)
6
)(u
2
u 1)(u
58
8u
57
+ ··· 4u + 1)
19
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y 1)
2
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
· (y
58
32y
57
+ ··· 94y + 1)
c
2
((y 1)
2
)(y
6
+ y
5
+ ··· + 3y + 1)(y
58
8y
57
+ ··· 7838y + 1)
c
3
, c
6
y
2
(y
6
3y
5
+ ··· y + 1)(y
58
18y
57
+ ··· 360y + 16)
c
5
, c
9
y
6
(y
2
3y + 1)(y
58
42y
57
+ ··· 8192y + 4096)
c
7
y
2
(y
6
+ y
5
+ ··· + 3y + 1)(y
58
+ 42y
57
+ ··· 33056y + 256)
c
8
, c
10
, c
11
((y 1)
6
)(y
2
3y + 1)(y
58
60y
57
+ ··· 36y + 1)
20