12n
0634
(K12n
0634
)
A knot diagram
1
Linearized knot diagam
3 7 9 11 3 10 2 5 12 7 4 6
Solving Sequence
3,7
2 8
1,11
10 6 5 9 4 12
c
2
c
7
c
1
c
10
c
6
c
5
c
8
c
4
c
12
c
3
, c
9
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.95711 × 10
172
u
51
3.47717 × 10
172
u
50
+ ··· + 1.87747 × 10
177
b + 1.65522 × 10
176
,
5.80863 × 10
175
u
51
+ 7.03687 × 10
175
u
50
+ ··· + 8.07312 × 10
178
a + 1.92816 × 10
178
,
u
52
+ u
51
+ ··· 430u 1849i
I
u
2
= h7.95354 × 10
18
u
28
2.49597 × 10
18
u
27
+ ··· + 1.30438 × 10
19
b + 9.76819 × 10
18
,
2.06470 × 10
19
u
28
4.89686 × 10
18
u
27
+ ··· + 1.30438 × 10
19
a 4.59506 × 10
19
,
u
29
+ 16u
27
+ ··· + 2u + 1i
* 2 irreducible components of dim
C
= 0, with total 81 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.96 × 10
172
u
51
3.48 × 10
172
u
50
+ · · · + 1.88 × 10
177
b + 1.66 ×
10
176
, 5.81 × 10
175
u
51
+ 7.04 × 10
175
u
50
+ · · · + 8.07 × 10
178
a + 1.93 ×
10
178
, u
52
+ u
51
+ · · · 430u 1849i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
8
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
2
a
11
=
0.000719502u
51
0.000871642u
50
+ ··· 2.02990u 0.238837
0.0000104242u
51
+ 0.0000185205u
50
+ ··· 2.44475u 0.0881622
a
10
=
0.000719502u
51
0.000871642u
50
+ ··· 2.02990u 0.238837
8.14632 × 10
7
u
51
0.0000812325u
50
+ ··· 1.04897u + 0.193144
a
6
=
0.000695591u
51
+ 0.000693094u
50
+ ··· + 5.78811u + 1.78101
0.000147181u
51
+ 0.000119151u
50
+ ··· + 2.46237u + 0.340252
a
5
=
0.000548410u
51
+ 0.000573943u
50
+ ··· + 3.32574u + 1.44076
0.000147181u
51
+ 0.000119151u
50
+ ··· + 2.46237u + 0.340252
a
9
=
0.000562077u
51
0.000571100u
50
+ ··· 6.77593u 2.97489
0.000159864u
51
0.000179227u
50
+ ··· 2.17934u 0.533160
a
4
=
0.000231771u
51
+ 0.000153448u
50
+ ··· + 10.5786u + 4.67788
0.0000301411u
51
+ 0.0000823394u
50
+ ··· + 2.47373u + 0.457419
a
12
=
0.000440440u
51
+ 0.000638660u
50
+ ··· 4.30838u + 4.57675
0.0000737660u
51
+ 0.0000885300u
50
+ ··· 0.804093u + 0.949948
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.000209766u
51
+ 0.000739361u
50
+ ··· + 3.85584u 4.14186
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
52
+ 83u
51
+ ··· 10239762u + 3418801
c
2
, c
7
u
52
u
51
+ ··· + 430u 1849
c
3
u
52
u
51
+ ··· 96u + 9
c
4
, c
11
u
52
2u
51
+ ··· 1077u 89
c
5
u
52
+ 47u
50
+ ··· 950335u 289973
c
6
, c
10
u
52
+ 2u
51
+ ··· + 91u 181
c
8
u
52
+ 5u
51
+ ··· 38226689u + 7428119
c
9
u
52
5u
51
+ ··· + 324u + 356
c
12
u
52
2u
51
+ ··· 81165u + 4259
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
52
209y
51
+ ··· + 1284466243376242y + 11688200277601
c
2
, c
7
y
52
+ 83y
51
+ ··· 10239762y + 3418801
c
3
y
52
11y
51
+ ··· 4590y + 81
c
4
, c
11
y
52
+ 50y
51
+ ··· 321727y + 7921
c
5
y
52
+ 94y
51
+ ··· 346734679987y + 84084340729
c
6
, c
10
y
52
54y
51
+ ··· + 1011111y + 32761
c
8
y
52
73y
51
+ ··· 308498524989461y + 55176951878161
c
9
y
52
25y
51
+ ··· + 789296y + 126736
c
12
y
52
+ 98y
51
+ ··· 7982256041y + 18139081
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.275825 + 0.932345I
a = 0.380468 0.078038I
b = 1.52892 + 1.15015I
2.42630 + 6.41308I 1.23938 7.68294I
u = 0.275825 0.932345I
a = 0.380468 + 0.078038I
b = 1.52892 1.15015I
2.42630 6.41308I 1.23938 + 7.68294I
u = 0.539271 + 0.935679I
a = 0.287527 + 0.954049I
b = 0.817124 + 0.789515I
3.75694 + 4.49624I 7.52077 6.70808I
u = 0.539271 0.935679I
a = 0.287527 0.954049I
b = 0.817124 0.789515I
3.75694 4.49624I 7.52077 + 6.70808I
u = 0.650501 + 0.863107I
a = 0.691550 0.812723I
b = 1.61355 1.85935I
0.50603 2.57474I 0. + 4.06110I
u = 0.650501 0.863107I
a = 0.691550 + 0.812723I
b = 1.61355 + 1.85935I
0.50603 + 2.57474I 0. 4.06110I
u = 0.202582 + 0.881244I
a = 0.630878 0.801031I
b = 0.512799 + 0.454432I
1.81662 1.18879I 5.31113 + 2.20959I
u = 0.202582 0.881244I
a = 0.630878 + 0.801031I
b = 0.512799 0.454432I
1.81662 + 1.18879I 5.31113 2.20959I
u = 0.351525 + 1.081680I
a = 0.672391 + 1.023130I
b = 0.217102 0.172805I
8.65330 1.89169I 8.34506 + 0.93318I
u = 0.351525 1.081680I
a = 0.672391 1.023130I
b = 0.217102 + 0.172805I
8.65330 + 1.89169I 8.34506 0.93318I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.818940 + 0.160767I
a = 1.69144 + 0.20465I
b = 0.928736 + 0.671508I
5.38897 + 0.87571I 2.85912 + 2.34335I
u = 0.818940 0.160767I
a = 1.69144 0.20465I
b = 0.928736 0.671508I
5.38897 0.87571I 2.85912 2.34335I
u = 0.335509 + 0.751647I
a = 0.538199 0.371856I
b = 0.932426 0.178983I
0.27804 1.89990I 0.73245 + 4.61007I
u = 0.335509 0.751647I
a = 0.538199 + 0.371856I
b = 0.932426 + 0.178983I
0.27804 + 1.89990I 0.73245 4.61007I
u = 0.213597 + 1.222440I
a = 0.743596 0.589889I
b = 1.60989 1.34032I
1.01333 + 1.02881I 0
u = 0.213597 1.222440I
a = 0.743596 + 0.589889I
b = 1.60989 + 1.34032I
1.01333 1.02881I 0
u = 0.055615 + 0.755904I
a = 0.49398 1.42299I
b = 1.190970 0.372066I
2.79971 1.53838I 4.05410 + 0.44087I
u = 0.055615 0.755904I
a = 0.49398 + 1.42299I
b = 1.190970 + 0.372066I
2.79971 + 1.53838I 4.05410 0.44087I
u = 0.679978
a = 1.52551
b = 0.501507
1.67869 6.69150
u = 0.336439 + 0.585453I
a = 0.443953 0.493321I
b = 0.599232 0.191514I
3.82874 0.83282I 6.69897 1.25074I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.336439 0.585453I
a = 0.443953 + 0.493321I
b = 0.599232 + 0.191514I
3.82874 + 0.83282I 6.69897 + 1.25074I
u = 0.521240 + 0.365317I
a = 0.555831 + 0.734286I
b = 1.084070 + 0.405815I
1.16726 3.02767I 1.89586 + 2.76037I
u = 0.521240 0.365317I
a = 0.555831 0.734286I
b = 1.084070 0.405815I
1.16726 + 3.02767I 1.89586 2.76037I
u = 0.898610 + 1.083740I
a = 0.832366 0.553360I
b = 0.203830 + 0.717311I
7.83351 + 4.08846I 0
u = 0.898610 1.083740I
a = 0.832366 + 0.553360I
b = 0.203830 0.717311I
7.83351 4.08846I 0
u = 1.02788 + 1.21603I
a = 0.666350 1.075790I
b = 2.88476 + 0.58421I
9.81716 1.76389I 0
u = 1.02788 1.21603I
a = 0.666350 + 1.075790I
b = 2.88476 0.58421I
9.81716 + 1.76389I 0
u = 0.08564 + 1.59213I
a = 0.412998 + 0.094265I
b = 0.692278 + 0.084135I
8.51191 3.22667I 0
u = 0.08564 1.59213I
a = 0.412998 0.094265I
b = 0.692278 0.084135I
8.51191 + 3.22667I 0
u = 0.330077 + 0.195063I
a = 0.625921 + 0.929420I
b = 0.680678 0.511018I
1.12780 0.87427I 7.10299 + 3.37562I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.330077 0.195063I
a = 0.625921 0.929420I
b = 0.680678 + 0.511018I
1.12780 + 0.87427I 7.10299 3.37562I
u = 0.255114 + 0.232956I
a = 3.71521 + 1.79997I
b = 0.880754 0.179713I
5.75128 6.56432I 4.11138 + 4.05271I
u = 0.255114 0.232956I
a = 3.71521 1.79997I
b = 0.880754 + 0.179713I
5.75128 + 6.56432I 4.11138 4.05271I
u = 0.337796
a = 3.69732
b = 1.37016
0.727216 13.1080
u = 0.03672 + 1.74560I
a = 0.251249 + 0.023127I
b = 1.289730 + 0.212055I
12.39400 + 0.81454I 0
u = 0.03672 1.74560I
a = 0.251249 0.023127I
b = 1.289730 0.212055I
12.39400 0.81454I 0
u = 1.15761 + 1.51843I
a = 0.586482 + 0.796448I
b = 2.30536 1.24673I
10.15170 6.43419I 0
u = 1.15761 1.51843I
a = 0.586482 0.796448I
b = 2.30536 + 1.24673I
10.15170 + 6.43419I 0
u = 0.32226 + 1.90220I
a = 0.014803 0.900992I
b = 1.44976 + 0.57133I
19.1346 + 2.1490I 0
u = 0.32226 1.90220I
a = 0.014803 + 0.900992I
b = 1.44976 0.57133I
19.1346 2.1490I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.07800 + 1.98796I
a = 0.109017 0.866405I
b = 0.805068 + 0.656452I
15.4556 + 6.9522I 0
u = 0.07800 1.98796I
a = 0.109017 + 0.866405I
b = 0.805068 0.656452I
15.4556 6.9522I 0
u = 0.02112 + 2.09350I
a = 0.144533 + 0.825946I
b = 0.865609 1.012250I
14.6985 0.9884I 0
u = 0.02112 2.09350I
a = 0.144533 0.825946I
b = 0.865609 + 1.012250I
14.6985 + 0.9884I 0
u = 0.53139 + 2.03050I
a = 0.245255 + 0.983595I
b = 3.40407 0.93661I
19.4506 + 5.7616I 0
u = 0.53139 2.03050I
a = 0.245255 0.983595I
b = 3.40407 + 0.93661I
19.4506 5.7616I 0
u = 0.43024 + 2.08016I
a = 0.185917 0.896546I
b = 2.73017 + 0.92922I
17.8356 14.3502I 0
u = 0.43024 2.08016I
a = 0.185917 + 0.896546I
b = 2.73017 0.92922I
17.8356 + 14.3502I 0
u = 0.09944 + 2.16592I
a = 0.924083 + 0.081345I
b = 3.92522 0.71460I
15.4081 + 4.9026I 0
u = 0.09944 2.16592I
a = 0.924083 0.081345I
b = 3.92522 + 0.71460I
15.4081 4.9026I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.47962 + 2.20629I
a = 0.053614 + 0.744727I
b = 1.49215 0.97274I
18.5854 3.5520I 0
u = 0.47962 2.20629I
a = 0.053614 0.744727I
b = 1.49215 + 0.97274I
18.5854 + 3.5520I 0
10
II. I
u
2
= h7.95 × 10
18
u
28
2.50 × 10
18
u
27
+ · · · + 1.30 × 10
19
b + 9.77 ×
10
18
, 2.06 × 10
19
u
28
4.90 × 10
18
u
27
+ · · · + 1.30 × 10
19
a 4.60 ×
10
19
, u
29
+ 16u
27
+ · · · + 2u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
8
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
2
a
11
=
1.58289u
28
+ 0.375416u
27
+ ··· + 23.0341u + 3.52278
0.609755u
28
+ 0.191352u
27
+ ··· 1.62838u 0.748874
a
10
=
1.58289u
28
+ 0.375416u
27
+ ··· + 23.0341u + 3.52278
0.646274u
28
+ 0.321379u
27
+ ··· + 0.705339u 0.373458
a
6
=
2.19231u
28
0.581219u
27
+ ··· 25.5255u 3.87277
0.146160u
28
+ 0.168172u
27
+ ··· 3.05911u + 0.0131335
a
5
=
2.33847u
28
0.749392u
27
+ ··· 22.4664u 3.88591
0.146160u
28
+ 0.168172u
27
+ ··· 3.05911u + 0.0131335
a
9
=
1.23953u
28
+ 0.189431u
27
+ ··· 8.70535u 5.08357
0.592887u
28
+ 0.289661u
27
+ ··· + 7.84451u + 1.80937
a
4
=
3.39570u
28
0.362303u
27
+ ··· 20.3142u + 1.55184
0.716281u
28
+ 0.0775215u
27
+ ··· 1.88678u 0.0652422
a
12
=
1.88363u
28
0.861725u
27
+ ··· 12.0156u 6.82950
0.288048u
28
+ 0.0864079u
27
+ ··· 1.05603u 1.20804
(ii) Obstruction class = 1
(iii) Cusp Shapes =
37295273734905786033
13043842048949049407
u
28
+
7379073912415012035
13043842048949049407
u
27
+ ··· +
523698604375136567
13043842048949049407
u
12328496894734939546
13043842048949049407
11
(iv) u-Polynomials at the component
12
Crossings u-Polynomials at each crossing
c
1
u
29
32u
28
+ ··· 30u + 1
c
2
u
29
+ 16u
27
+ ··· + 2u + 1
c
3
u
29
u
27
+ ··· + 4u + 1
c
4
u
29
+ u
28
+ ··· u 13
c
5
u
29
+ u
28
+ ··· u 1
c
6
u
29
+ u
28
+ ··· 3u 1
c
7
u
29
+ 16u
27
+ ··· + 2u 1
c
8
u
29
6u
27
+ ··· + 5u + 1
c
9
u
29
4u
28
+ ··· + 24u 4
c
10
u
29
u
28
+ ··· 3u + 1
c
11
u
29
u
28
+ ··· u + 13
c
12
u
29
u
28
+ ··· + 355u + 187
13
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
29
52y
28
+ ··· + 34y 1
c
2
, c
7
y
29
+ 32y
28
+ ··· 30y 1
c
3
y
29
2y
28
+ ··· + 26y 1
c
4
, c
11
y
29
+ 23y
28
+ ··· 2209y 169
c
5
y
29
+ 15y
28
+ ··· + 11y 1
c
6
, c
10
y
29
17y
28
+ ··· + 17y 1
c
8
y
29
12y
28
+ ··· 103y 1
c
9
y
29
8y
28
+ ··· 288y 16
c
12
y
29
+ 39y
28
+ ··· + 65437y 34969
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.501818 + 0.833839I
a = 0.467030 + 0.518760I
b = 1.186310 0.660678I
2.46701 + 3.31089I 6.64762 4.28533I
u = 0.501818 0.833839I
a = 0.467030 0.518760I
b = 1.186310 + 0.660678I
2.46701 3.31089I 6.64762 + 4.28533I
u = 0.395046 + 0.881302I
a = 0.193357 1.331450I
b = 1.139830 + 0.271865I
6.12414 + 8.00905I 5.12519 8.45010I
u = 0.395046 0.881302I
a = 0.193357 + 1.331450I
b = 1.139830 0.271865I
6.12414 8.00905I 5.12519 + 8.45010I
u = 0.341041 + 1.028870I
a = 0.194038 0.579843I
b = 1.10689 1.28067I
3.12004 6.46709I 9.74691 + 8.24915I
u = 0.341041 1.028870I
a = 0.194038 + 0.579843I
b = 1.10689 + 1.28067I
3.12004 + 6.46709I 9.74691 8.24915I
u = 0.400082 + 1.085830I
a = 0.741612 + 0.558186I
b = 1.54514 + 1.73471I
1.43870 + 1.55601I 3.91538 4.80433I
u = 0.400082 1.085830I
a = 0.741612 0.558186I
b = 1.54514 1.73471I
1.43870 1.55601I 3.91538 + 4.80433I
u = 0.377353 + 1.105050I
a = 0.019943 0.931023I
b = 1.48812 0.50305I
3.06298 3.21483I 6.22465 + 3.26026I
u = 0.377353 1.105050I
a = 0.019943 + 0.931023I
b = 1.48812 + 0.50305I
3.06298 + 3.21483I 6.22465 3.26026I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.757913 + 0.894886I
a = 0.934300 + 0.874778I
b = 1.59792 + 2.38337I
0.51479 2.85047I 6.69492 + 4.19394I
u = 0.757913 0.894886I
a = 0.934300 0.874778I
b = 1.59792 2.38337I
0.51479 + 2.85047I 6.69492 4.19394I
u = 0.284256 + 1.182870I
a = 0.333089 0.615425I
b = 1.232700 + 0.271698I
2.12362 + 0.73935I 5.54663 2.17801I
u = 0.284256 1.182870I
a = 0.333089 + 0.615425I
b = 1.232700 0.271698I
2.12362 0.73935I 5.54663 + 2.17801I
u = 0.125391 + 0.740741I
a = 0.072781 + 1.150700I
b = 0.445959 + 0.328062I
0.218621 + 1.074110I 0.75381 2.66974I
u = 0.125391 0.740741I
a = 0.072781 1.150700I
b = 0.445959 0.328062I
0.218621 1.074110I 0.75381 + 2.66974I
u = 0.856142 + 1.047000I
a = 0.906222 + 0.682310I
b = 0.823807 0.830433I
6.75266 3.66088I 3.57875 + 1.97522I
u = 0.856142 1.047000I
a = 0.906222 0.682310I
b = 0.823807 + 0.830433I
6.75266 + 3.66088I 3.57875 1.97522I
u = 0.09611 + 1.48953I
a = 0.207292 0.225440I
b = 0.209690 + 0.379206I
9.07326 3.27525I 11.96737 + 3.20156I
u = 0.09611 1.48953I
a = 0.207292 + 0.225440I
b = 0.209690 0.379206I
9.07326 + 3.27525I 11.96737 3.20156I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.464529
a = 2.40413
b = 1.14153
0.233389 4.21310
u = 0.162389 + 0.372510I
a = 1.81490 + 1.30389I
b = 1.027750 + 0.895148I
4.36963 + 2.21765I 9.43891 3.55386I
u = 0.162389 0.372510I
a = 1.81490 1.30389I
b = 1.027750 0.895148I
4.36963 2.21765I 9.43891 + 3.55386I
u = 0.120647 + 0.309845I
a = 2.64004 + 2.81826I
b = 0.376943 + 0.344347I
5.97746 1.81572I 6.79885 + 3.34834I
u = 0.120647 0.309845I
a = 2.64004 2.81826I
b = 0.376943 0.344347I
5.97746 + 1.81572I 6.79885 3.34834I
u = 0.08118 + 1.72162I
a = 0.376707 0.332059I
b = 1.30625 + 0.74373I
12.44300 + 1.68015I 8.40294 + 0.I
u = 0.08118 1.72162I
a = 0.376707 + 0.332059I
b = 1.30625 0.74373I
12.44300 1.68015I 8.40294 + 0.I
u = 0.36851 + 2.08278I
a = 0.000762 0.835761I
b = 1.54959 + 0.95102I
17.4518 + 2.8402I 0
u = 0.36851 2.08278I
a = 0.000762 + 0.835761I
b = 1.54959 0.95102I
17.4518 2.8402I 0
18
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
29
32u
28
+ ··· 30u + 1)
· (u
52
+ 83u
51
+ ··· 10239762u + 3418801)
c
2
(u
29
+ 16u
27
+ ··· + 2u + 1)(u
52
u
51
+ ··· + 430u 1849)
c
3
(u
29
u
27
+ ··· + 4u + 1)(u
52
u
51
+ ··· 96u + 9)
c
4
(u
29
+ u
28
+ ··· u 13)(u
52
2u
51
+ ··· 1077u 89)
c
5
(u
29
+ u
28
+ ··· u 1)(u
52
+ 47u
50
+ ··· 950335u 289973)
c
6
(u
29
+ u
28
+ ··· 3u 1)(u
52
+ 2u
51
+ ··· + 91u 181)
c
7
(u
29
+ 16u
27
+ ··· + 2u 1)(u
52
u
51
+ ··· + 430u 1849)
c
8
(u
29
6u
27
+ ··· + 5u + 1)(u
52
+ 5u
51
+ ··· 3.82267 × 10
7
u + 7428119)
c
9
(u
29
4u
28
+ ··· + 24u 4)(u
52
5u
51
+ ··· + 324u + 356)
c
10
(u
29
u
28
+ ··· 3u + 1)(u
52
+ 2u
51
+ ··· + 91u 181)
c
11
(u
29
u
28
+ ··· u + 13)(u
52
2u
51
+ ··· 1077u 89)
c
12
(u
29
u
28
+ ··· + 355u + 187)(u
52
2u
51
+ ··· 81165u + 4259)
19
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
29
52y
28
+ ··· + 34y 1)
· (y
52
209y
51
+ ··· + 1284466243376242y + 11688200277601)
c
2
, c
7
(y
29
+ 32y
28
+ ··· 30y 1)
· (y
52
+ 83y
51
+ ··· 10239762y + 3418801)
c
3
(y
29
2y
28
+ ··· + 26y 1)(y
52
11y
51
+ ··· 4590y + 81)
c
4
, c
11
(y
29
+ 23y
28
+ ··· 2209y 169)
· (y
52
+ 50y
51
+ ··· 321727y + 7921)
c
5
(y
29
+ 15y
28
+ ··· + 11y 1)
· (y
52
+ 94y
51
+ ··· 346734679987y + 84084340729)
c
6
, c
10
(y
29
17y
28
+ ··· + 17y 1)(y
52
54y
51
+ ··· + 1011111y + 32761)
c
8
(y
29
12y
28
+ ··· 103y 1)
· (y
52
73y
51
+ ··· 308498524989461y + 55176951878161)
c
9
(y
29
8y
28
+ ··· 288y 16)
· (y
52
25y
51
+ ··· + 789296y + 126736)
c
12
(y
29
+ 39y
28
+ ··· + 65437y 34969)
· (y
52
+ 98y
51
+ ··· 7982256041y + 18139081)
20