12n
0636
(K12n
0636
)
A knot diagram
1
Linearized knot diagam
3 8 6 12 1 12 9 2 5 4 6 10
Solving Sequence
1,5 6,10
9 12 7 4 3 2 8 11
c
5
c
9
c
12
c
6
c
4
c
3
c
1
c
8
c
11
c
2
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hb u, 1.29424 × 10
29
u
28
4.50885 × 10
29
u
27
+ ··· + 1.80747 × 10
27
a + 2.71900 × 10
29
,
u
29
4u
28
+ ··· + 41u
2
1i
I
u
2
= hb + u, 1.14135 × 10
17
u
24
+ 9.49047 × 10
15
u
23
+ ··· + 2.50582 × 10
16
a + 3.47140 × 10
17
,
u
25
+ 3u
23
+ ··· 4u 1i
I
u
3
= h5.05848 × 10
26
u
23
+ 1.72101 × 10
27
u
22
+ ··· + 1.51027 × 10
28
b 1.97809 × 10
29
,
1.66317 × 10
24
u
23
+ 5.60162 × 10
24
u
22
+ ··· + 2.05980 × 10
25
a 6.95407 × 10
26
,
u
24
+ 3u
23
+ ··· 916u + 152i
I
u
4
= hb + 1, 3u
3
8u
2
+ 4a + 9u 5, u
4
4u
3
+ 7u
2
7u + 4i
I
u
5
= hb + 1, a
4
3a
3
+ 5a
2
3a + 2, u + 1i
I
u
6
= h−a
3
a
2
+ b a 1, a
4
+ a
3
+ a
2
+ 1, u + 1i
* 6 irreducible components of dim
C
= 0, with total 90 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hb u, 1.29 × 10
29
u
28
4.51 × 10
29
u
27
+ · · · + 1.81 × 10
27
a + 2.72 ×
10
29
, u
29
4u
28
+ · · · + 41u
2
1i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
10
=
71.6051u
28
+ 249.456u
27
+ ··· 223.148u 150.431
u
a
9
=
71.6051u
28
+ 249.456u
27
+ ··· 224.148u 150.431
u
a
12
=
11.9756u
28
+ 39.5117u
27
+ ··· + 56.9931u 41.0153
18.4538u
28
+ 64.5320u
27
+ ··· 70.6051u 36.9640
a
7
=
7.86693u
28
25.7993u
27
+ ··· 20.9730u + 45.9410
19.6452u
28
+ 68.7556u
27
+ ··· 79.1491u 38.6368
a
4
=
3.16963u
28
+ 10.4056u
27
+ ··· + 11.0912u 19.1412
20.6054u
28
72.0642u
27
+ ··· + 82.3187u + 40.9096
a
3
=
22.8148u
28
+ 79.1613u
27
+ ··· 68.0578u 57.7779
25.5368u
28
89.2904u
27
+ ··· + 101.964u + 50.7349
a
2
=
28.1973u
28
97.3373u
27
+ ··· + 82.3877u + 69.1927
18.7535u
28
+ 65.8134u
27
+ ··· 77.9114u 37.4792
a
8
=
36.1766u
28
+ 127.011u
27
+ ··· 157.595u 62.5413
25.5368u
28
+ 89.2904u
27
+ ··· 101.964u 50.7349
a
11
=
34.4315u
28
+ 118.013u
27
+ ··· 25.5876u 86.3700
12.7801u
28
+ 44.6947u
27
+ ··· 48.1492u 25.6417
(ii) Obstruction class = 1
(iii) Cusp Shapes = 362.367u
28
+ 1266.86u
27
+ ··· 1402.63u 756.448
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
29
+ 8u
28
+ ··· + 160u 64
c
2
, c
8
u
29
+ 8u
28
+ ··· + 16u + 8
c
3
u
29
+ 15u
28
+ ··· + 496u + 64
c
4
u
29
+ 2u
28
+ ··· + 5u + 13
c
5
, c
9
u
29
+ 4u
28
+ ··· 41u
2
+ 1
c
6
, c
10
, c
11
u
29
+ 24u
27
+ ··· + 5u + 1
c
12
u
29
13u
28
+ ··· 100u + 8
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
29
+ 24y
28
+ ··· + 94720y 4096
c
2
, c
8
y
29
+ 8y
28
+ ··· + 160y 64
c
3
y
29
35y
28
+ ··· + 24832y 4096
c
4
y
29
+ 30y
28
+ ··· 1041y 169
c
5
, c
9
y
29
20y
28
+ ··· + 82y 1
c
6
, c
10
, c
11
y
29
+ 48y
28
+ ··· 15y 1
c
12
y
29
3y
28
+ ··· 560y 64
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.960292 + 0.114322I
a = 0.295102 0.789708I
b = 0.960292 + 0.114322I
4.26314 + 5.68742I 0.21225 6.40052I
u = 0.960292 0.114322I
a = 0.295102 + 0.789708I
b = 0.960292 0.114322I
4.26314 5.68742I 0.21225 + 6.40052I
u = 0.800224 + 0.473422I
a = 0.020933 + 0.683003I
b = 0.800224 + 0.473422I
1.38041 0.94269I 4.60342 + 1.76965I
u = 0.800224 0.473422I
a = 0.020933 0.683003I
b = 0.800224 0.473422I
1.38041 + 0.94269I 4.60342 1.76965I
u = 0.214505 + 0.830763I
a = 0.085940 + 0.697105I
b = 0.214505 + 0.830763I
0.18552 2.10133I 2.36676 + 3.80844I
u = 0.214505 0.830763I
a = 0.085940 0.697105I
b = 0.214505 0.830763I
0.18552 + 2.10133I 2.36676 3.80844I
u = 0.834842 + 0.841974I
a = 0.065712 + 0.604077I
b = 0.834842 + 0.841974I
2.03034 + 3.15669I 2.00000 3.13089I
u = 0.834842 0.841974I
a = 0.065712 0.604077I
b = 0.834842 0.841974I
2.03034 3.15669I 2.00000 + 3.13089I
u = 1.170000 + 0.647600I
a = 0.207159 + 1.203770I
b = 1.170000 + 0.647600I
5.63179 9.07757I 0
u = 1.170000 0.647600I
a = 0.207159 1.203770I
b = 1.170000 0.647600I
5.63179 + 9.07757I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.322730 + 0.290095I
a = 0.615161 + 1.063240I
b = 1.322730 + 0.290095I
9.61338 + 4.40602I 0
u = 1.322730 0.290095I
a = 0.615161 1.063240I
b = 1.322730 0.290095I
9.61338 4.40602I 0
u = 1.151990 + 0.728821I
a = 0.002396 + 0.567381I
b = 1.151990 + 0.728821I
4.32796 2.63394I 0
u = 1.151990 0.728821I
a = 0.002396 0.567381I
b = 1.151990 0.728821I
4.32796 + 2.63394I 0
u = 1.171900 + 0.729482I
a = 1.156260 0.116734I
b = 1.171900 + 0.729482I
12.9658 7.6542I 0
u = 1.171900 0.729482I
a = 1.156260 + 0.116734I
b = 1.171900 0.729482I
12.9658 + 7.6542I 0
u = 1.29794 + 0.56457I
a = 1.101150 0.319489I
b = 1.29794 + 0.56457I
14.08170 + 0.96061I 0
u = 1.29794 0.56457I
a = 1.101150 + 0.319489I
b = 1.29794 0.56457I
14.08170 0.96061I 0
u = 1.16421 + 0.82395I
a = 0.013535 + 0.551844I
b = 1.16421 + 0.82395I
3.49095 + 8.40992I 0
u = 1.16421 0.82395I
a = 0.013535 0.551844I
b = 1.16421 0.82395I
3.49095 8.40992I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.498483 + 0.001453I
a = 0.228167 1.207220I
b = 0.498483 + 0.001453I
0.76521 + 1.33560I 4.03541 5.87673I
u = 0.498483 0.001453I
a = 0.228167 + 1.207220I
b = 0.498483 0.001453I
0.76521 1.33560I 4.03541 + 5.87673I
u = 0.233111
a = 5.33841
b = 0.233111
1.74928 9.97660
u = 0.179695 + 0.046426I
a = 8.32456 5.44841I
b = 0.179695 + 0.046426I
5.01406 4.22563I 16.2179 14.6298I
u = 0.179695 0.046426I
a = 8.32456 + 5.44841I
b = 0.179695 0.046426I
5.01406 + 4.22563I 16.2179 + 14.6298I
u = 1.60072 + 0.97916I
a = 0.124611 + 0.805147I
b = 1.60072 + 0.97916I
14.8695 + 9.1201I 0
u = 1.60072 0.97916I
a = 0.124611 0.805147I
b = 1.60072 0.97916I
14.8695 9.1201I 0
u = 1.53648 + 1.11077I
a = 0.053142 + 0.796682I
b = 1.53648 + 1.11077I
13.9120 15.6954I 0
u = 1.53648 1.11077I
a = 0.053142 0.796682I
b = 1.53648 1.11077I
13.9120 + 15.6954I 0
7
II. I
u
2
= hb + u, 1.14 × 10
17
u
24
+ 9.49 × 10
15
u
23
+ · · · + 2.51 × 10
16
a +
3.47 × 10
17
, u
25
+ 3u
23
+ · · · 4u 1i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
10
=
4.55481u
24
0.378737u
23
+ ··· 23.2828u 13.8534
u
a
9
=
4.55481u
24
0.378737u
23
+ ··· 22.2828u 13.8534
u
a
12
=
11.3465u
24
3.75211u
23
+ ··· 53.6177u 24.6474
0.463760u
24
0.563270u
23
+ ··· 2.03987u + 0.378737
a
7
=
13.8534u
24
+ 4.55481u
23
+ ··· + 73.9510u + 33.1307
0.127690u
24
0.228930u
23
+ ··· + 1.62932u + 0.250675
a
4
=
3.62126u
24
+ 1.46376u
23
+ ··· + 17.6341u + 9.44519
0.690960u
24
0.0116943u
23
+ ··· 3.86310u 1.71443
a
3
=
3.74895u
24
+ 1.23483u
23
+ ··· + 19.2634u + 9.69586
0.388246u
24
+ 0.192434u
23
+ ··· 2.81969u 1.48550
a
2
=
6.66089u
24
+ 2.95614u
23
+ ··· + 33.1139u + 11.4051
0.871238u
24
0.115442u
23
+ ··· 3.96879u 1.75674
a
8
=
2.92829u
24
+ 0.509793u
23
+ ··· + 17.3146u + 9.64795
0.388246u
24
0.192434u
23
+ ··· + 2.81969u + 1.48550
a
11
=
12.5972u
24
3.87980u
23
+ ··· 59.3194u 28.0208
0.692691u
24
0.865985u
23
+ ··· 2.77978u + 0.506427
(ii) Obstruction class = 1
(iii) Cusp Shapes =
141347430048502710
4176363078274867
u
24
+
49486291278266828
4176363078274867
u
23
+···+
739293424200395475
4176363078274867
u+
319470269701535049
4176363078274867
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
25
10u
24
+ ··· 44u + 4
c
2
u
25
+ 5u
23
+ ··· + 11u
2
+ 2
c
3
u
25
+ 19u
24
+ ··· 21u + 41
c
4
u
25
u
24
+ ··· 17u
2
+ 2
c
5
, c
9
u
25
+ 3u
23
+ ··· 4u 1
c
6
, c
10
u
25
+ 7u
23
+ ··· u 1
c
8
u
25
+ 5u
23
+ ··· 11u
2
2
c
11
u
25
+ 7u
23
+ ··· u + 1
c
12
u
25
+ 11u
24
+ ··· 7u
2
+ 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
25
+ 18y
24
+ ··· 24y 16
c
2
, c
8
y
25
+ 10y
24
+ ··· 44y 4
c
3
y
25
35y
24
+ ··· + 70715y 1681
c
4
y
25
+ 11y
24
+ ··· + 68y 4
c
5
, c
9
y
25
+ 6y
24
+ ··· + 10y 1
c
6
, c
10
, c
11
y
25
+ 14y
24
+ ··· + 17y 1
c
12
y
25
3y
24
+ ··· + 14y 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.796080 + 0.645844I
a = 0.596796 0.240010I
b = 0.796080 0.645844I
4.84322 2.05050I 0.28599 1.48631I
u = 0.796080 0.645844I
a = 0.596796 + 0.240010I
b = 0.796080 + 0.645844I
4.84322 + 2.05050I 0.28599 + 1.48631I
u = 0.296077 + 0.914388I
a = 0.699710 1.211640I
b = 0.296077 0.914388I
2.56141 + 2.33620I 10.59682 7.19824I
u = 0.296077 0.914388I
a = 0.699710 + 1.211640I
b = 0.296077 + 0.914388I
2.56141 2.33620I 10.59682 + 7.19824I
u = 0.922082 + 0.228189I
a = 0.381519 0.872909I
b = 0.922082 0.228189I
6.61274 0.16294I 8.10933 + 0.42456I
u = 0.922082 0.228189I
a = 0.381519 + 0.872909I
b = 0.922082 + 0.228189I
6.61274 + 0.16294I 8.10933 0.42456I
u = 0.809953 + 0.096839I
a = 0.363322 1.250440I
b = 0.809953 0.096839I
5.86968 + 5.30210I 5.18661 5.91989I
u = 0.809953 0.096839I
a = 0.363322 + 1.250440I
b = 0.809953 + 0.096839I
5.86968 5.30210I 5.18661 + 5.91989I
u = 0.687921 + 1.038030I
a = 0.174351 0.908552I
b = 0.687921 1.038030I
3.20695 4.09541I 9.54085 + 4.81505I
u = 0.687921 1.038030I
a = 0.174351 + 0.908552I
b = 0.687921 + 1.038030I
3.20695 + 4.09541I 9.54085 4.81505I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.115530 + 0.661232I
a = 0.315105 0.652823I
b = 1.115530 0.661232I
3.30766 + 2.48097I 1.93779 1.88948I
u = 1.115530 0.661232I
a = 0.315105 + 0.652823I
b = 1.115530 + 0.661232I
3.30766 2.48097I 1.93779 + 1.88948I
u = 0.343736 + 1.273220I
a = 0.539488 0.735855I
b = 0.343736 1.273220I
0.22260 + 5.42341I 0.75618 6.73991I
u = 0.343736 1.273220I
a = 0.539488 + 0.735855I
b = 0.343736 + 1.273220I
0.22260 5.42341I 0.75618 + 6.73991I
u = 0.675230
a = 2.07673
b = 0.675230
1.26232 7.41310
u = 1.125130 + 0.793831I
a = 0.199464 0.663668I
b = 1.125130 0.793831I
2.60794 8.42230I 4.02327 + 7.25592I
u = 1.125130 0.793831I
a = 0.199464 + 0.663668I
b = 1.125130 + 0.793831I
2.60794 + 8.42230I 4.02327 7.25592I
u = 0.454409 + 1.305940I
a = 0.440942 0.724830I
b = 0.454409 1.305940I
0.334771 0.254683I 0.594711 0.383137I
u = 0.454409 1.305940I
a = 0.440942 + 0.724830I
b = 0.454409 + 1.305940I
0.334771 + 0.254683I 0.594711 + 0.383137I
u = 0.440390 + 0.366580I
a = 1.96302 0.28081I
b = 0.440390 0.366580I
3.32428 0.29299I 4.35678 + 0.94699I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.440390 0.366580I
a = 1.96302 + 0.28081I
b = 0.440390 + 0.366580I
3.32428 + 0.29299I 4.35678 0.94699I
u = 0.11956 + 1.47573I
a = 0.042858 + 0.212628I
b = 0.11956 1.47573I
11.63180 3.18462I 3.10708 + 2.38160I
u = 0.11956 1.47573I
a = 0.042858 0.212628I
b = 0.11956 + 1.47573I
11.63180 + 3.18462I 3.10708 2.38160I
u = 0.412870 + 0.210392I
a = 2.83528 2.84508I
b = 0.412870 0.210392I
4.92153 4.38703I 5.2090 + 22.1333I
u = 0.412870 0.210392I
a = 2.83528 + 2.84508I
b = 0.412870 + 0.210392I
4.92153 + 4.38703I 5.2090 22.1333I
13
III. I
u
3
=
h5.06×10
26
u
23
+1.72×10
27
u
22
+· · ·+1.51×10
28
b1.98×10
29
, 1.66×10
24
u
23
+
5.60 × 10
24
u
22
+ · · · + 2.06 × 10
25
a 6.95 × 10
26
, u
24
+ 3u
23
+ · · · 916u + 152i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
10
=
0.0807441u
23
0.271949u
22
+ ··· 112.103u + 33.7608
0.0334939u
23
0.113953u
22
+ ··· 45.6844u + 13.0976
a
9
=
0.0472503u
23
0.157996u
22
+ ··· 66.4189u + 20.6632
0.0334939u
23
0.113953u
22
+ ··· 45.6844u + 13.0976
a
12
=
0.0635809u
23
+ 0.212954u
22
+ ··· + 87.2711u 27.6880
0.0521176u
23
+ 0.175261u
22
+ ··· + 72.2476u 22.1390
a
7
=
0.0561598u
23
0.189820u
22
+ ··· 76.9321u + 22.8112
0.0172861u
23
+ 0.0557112u
22
+ ··· + 25.6034u 9.48966
a
4
=
0.0388737u
23
+ 0.134109u
22
+ ··· + 51.3287u 13.3215
0.0250608u
23
0.0822551u
22
+ ··· 35.7136u + 12.1478
a
3
=
0.0561598u
23
+ 0.189820u
22
+ ··· + 76.9321u 22.8112
0.0254832u
23
0.0841583u
22
+ ··· 36.6152u + 12.7335
a
2
=
0.0472503u
23
0.157996u
22
+ ··· 66.4189u + 20.6632
0.0278389u
23
0.0949127u
22
+ ··· 35.9862u + 10.6284
a
8
=
0.0719550u
23
0.242039u
22
+ ··· 98.3636u + 29.8284
0.0227300u
23
0.0785800u
22
+ ··· 30.8874u + 7.99453
a
11
=
0.123958u
23
+ 0.415686u
22
+ ··· + 170.200u 53.2032
0.0437678u
23
+ 0.146509u
22
+ ··· + 61.6377u 18.8555
(ii) Obstruction class = 1
(iii) Cusp Shapes =
789409549397297077238438255
1887837650177179023809147344
u
23
+
5345499614610035395715935423
3775675300354358047618294688
u
22
+
··· +
534181212237586784175387060335
943918825088589511904573672
u
81677490050712823192860035961
471959412544294755952286836
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
4
+ u
3
+ 3u
2
+ 2u + 1)
6
c
2
, c
8
(u
4
u
3
+ u
2
+ 1)
6
c
3
(u
4
3u
3
+ u
2
+ 2u + 1)
6
c
4
u
24
5u
23
+ ··· 19608u + 4792
c
5
, c
9
u
24
3u
23
+ ··· + 916u + 152
c
6
, c
10
, c
11
u
24
6u
23
+ ··· 2820u + 421
c
12
(u
4
+ u
3
+ u
2
+ 1)
6
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
6
c
2
, c
8
, c
12
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
6
c
3
(y
4
7y
3
+ 15y
2
2y + 1)
6
c
4
y
24
+ 13y
23
+ ··· + 10329632y + 22963264
c
5
, c
9
y
24
+ 9y
23
+ ··· 295504y + 23104
c
6
, c
10
, c
11
y
24
+ 34y
23
+ ··· 101592y + 177241
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.451653 + 0.937171I
a = 0.433636 1.117900I
b = 0.128858 0.863491I
2.06694 + 1.74886I 1.65348 + 2.34394I
u = 0.451653 0.937171I
a = 0.433636 + 1.117900I
b = 0.128858 + 0.863491I
2.06694 1.74886I 1.65348 2.34394I
u = 0.727252 + 0.755470I
a = 0.262219 + 0.718105I
b = 1.54826 + 2.15106I
11.93650 + 4.57907I 5.65348 7.47354I
u = 0.727252 0.755470I
a = 0.262219 0.718105I
b = 1.54826 2.15106I
11.93650 4.57907I 5.65348 + 7.47354I
u = 0.607909 + 0.908003I
a = 0.259320 1.111730I
b = 0.615212 1.239020I
2.06694 + 4.57907I 1.65348 7.47354I
u = 0.607909 0.908003I
a = 0.259320 + 1.111730I
b = 0.615212 + 1.239020I
2.06694 4.57907I 1.65348 + 7.47354I
u = 1.097460 + 0.195307I
a = 0.609099 0.938762I
b = 1.56114 0.84926I
4.93480 + 6.32793I 2.00000 5.12960I
u = 1.097460 0.195307I
a = 0.609099 + 0.938762I
b = 1.56114 + 0.84926I
4.93480 6.32793I 2.00000 + 5.12960I
u = 0.867738 + 0.717770I
a = 0.166984 + 0.692013I
b = 1.29037 + 2.27278I
11.93650 + 1.74886I 5.65348 + 2.34394I
u = 0.867738 0.717770I
a = 0.166984 0.692013I
b = 1.29037 2.27278I
11.93650 1.74886I 5.65348 2.34394I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.128858 + 0.863491I
a = 0.88836 1.11904I
b = 0.451653 0.937171I
2.06694 1.74886I 1.65348 2.34394I
u = 0.128858 0.863491I
a = 0.88836 + 1.11904I
b = 0.451653 + 0.937171I
2.06694 + 1.74886I 1.65348 + 2.34394I
u = 0.615212 + 1.239020I
a = 0.316184 0.844481I
b = 0.607909 0.908003I
2.06694 4.57907I 1.65348 + 7.47354I
u = 0.615212 1.239020I
a = 0.316184 + 0.844481I
b = 0.607909 + 0.908003I
2.06694 + 4.57907I 1.65348 7.47354I
u = 1.31086 + 0.82372I
a = 0.439962 0.273053I
b = 0.357423 0.019370I
4.93480 + 2.83021I 2.00000 9.81749I
u = 1.31086 0.82372I
a = 0.439962 + 0.273053I
b = 0.357423 + 0.019370I
4.93480 2.83021I 2.00000 + 9.81749I
u = 0.357423 + 0.019370I
a = 1.09031 1.95629I
b = 1.31086 0.82372I
4.93480 2.83021I 2.00000 + 9.81749I
u = 0.357423 0.019370I
a = 1.09031 + 1.95629I
b = 1.31086 + 0.82372I
4.93480 + 2.83021I 2.00000 9.81749I
u = 1.56114 + 0.84926I
a = 0.175996 0.679476I
b = 1.097460 0.195307I
4.93480 6.32793I 2.00000 + 5.12960I
u = 1.56114 0.84926I
a = 0.175996 + 0.679476I
b = 1.097460 + 0.195307I
4.93480 + 6.32793I 2.00000 5.12960I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.29037 + 2.27278I
a = 0.306144 0.019022I
b = 0.867738 + 0.717770I
11.93650 + 1.74886I 0
u = 1.29037 2.27278I
a = 0.306144 + 0.019022I
b = 0.867738 0.717770I
11.93650 1.74886I 0
u = 1.54826 + 2.15106I
a = 0.298140 0.051040I
b = 0.727252 + 0.755470I
11.93650 + 4.57907I 0
u = 1.54826 2.15106I
a = 0.298140 + 0.051040I
b = 0.727252 0.755470I
11.93650 4.57907I 0
19
IV. I
u
4
= hb + 1, 3u
3
8u
2
+ 4a + 9u 5, u
4
4u
3
+ 7u
2
7u + 4i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
10
=
3
4
u
3
+ 2u
2
9
4
u +
5
4
1
a
9
=
3
4
u
3
+ 2u
2
9
4
u +
9
4
1
a
12
=
1
4
u
3
+
1
4
u
1
4
u
3
3u
2
+ 5u 3
a
7
=
1
4
u
3
+
1
4
u
1
4
u
3
+ 3u
2
3u + 1
a
4
=
5
4
u
3
3u
2
+
11
4
u
3
4
u
3
+ 3u
2
6u + 7
a
3
=
1
4
u
3
1
4
u +
1
4
u
3
+ 2u
2
3u + 3
a
2
=
3
4
u
3
+ 2u
2
9
4
u +
9
4
u
3
4u
2
+ 6u 5
a
8
=
1
2
u
3
u
2
+
3
2
u
1
2
2u
3
+ 5u
2
5u + 2
a
11
=
5
4
u
3
+ 2u
2
3
4
u +
3
4
3u
3
11u
2
+ 15u 11
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
4
+ u
3
+ 3u
2
+ 2u + 1
c
2
, c
8
u
4
u
3
+ u
2
+ 1
c
3
u
4
3u
3
+ u
2
+ 2u + 1
c
4
u
4
+ 3u
3
+ 9u
2
+ 10u + 11
c
5
u
4
+ 4u
3
+ 7u
2
+ 7u + 4
c
6
, c
11
u
4
+ 3u
3
+ 6u
2
+ 8u + 8
c
9
(u 1)
4
c
10
u
4
+ 2u
3
+ 3u
2
+ 3u + 2
c
12
u
4
+ u
3
+ u
2
+ 1
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
4
+ 5y
3
+ 7y
2
+ 2y + 1
c
2
, c
8
, c
12
y
4
+ y
3
+ 3y
2
+ 2y + 1
c
3
y
4
7y
3
+ 15y
2
2y + 1
c
4
y
4
+ 9y
3
+ 43y
2
+ 98y + 121
c
5
y
4
2y
3
+ y
2
+ 7y + 16
c
6
, c
11
y
4
+ 3y
3
+ 4y
2
+ 32y + 64
c
9
(y 1)
4
c
10
y
4
+ 2y
3
+ y
2
+ 3y + 4
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.452576 + 1.120870I
a = 0.661541 + 0.046758I
b = 1.00000
4.93480 2.00000
u = 0.452576 1.120870I
a = 0.661541 0.046758I
b = 1.00000
4.93480 2.00000
u = 1.54742 + 0.58565I
a = 0.286541 0.697356I
b = 1.00000
4.93480 2.00000
u = 1.54742 0.58565I
a = 0.286541 + 0.697356I
b = 1.00000
4.93480 2.00000
23
V. I
u
5
= hb + 1, a
4
3a
3
+ 5a
2
3a + 2, u + 1i
(i) Arc colorings
a
1
=
0
1
a
5
=
1
0
a
6
=
1
1
a
10
=
a
1
a
9
=
a + 1
1
a
12
=
a
2
a 1
a
7
=
2a
3
4a
2
+ 3a 1
a
3
+ 2a
2
2a
a
4
=
a
3
a
2
+ 1
a
2
+ 2a 1
a
3
=
a
2
2a + 1
a
3
3a
2
+ 4a 1
a
2
=
a
3
+ a
2
a 1
a
2
2a + 2
a
8
=
a
3
3a
2
+ 4a 2
a
3
+ 3a
2
4a + 1
a
11
=
2a
2
+ a 1
a
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2
24
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
4
+ 3u
3
+ 4u
2
+ 4u + 4
c
2
, c
8
u
4
+ u
3
+ 2u
2
+ 2u + 2
c
3
u
4
+ u
3
3u
2
u + 4
c
4
u
4
u
3
+ 2u
2
2u + 2
c
5
, c
9
(u 1)
4
c
6
, c
10
, c
11
u
4
+ 4u
2
2u + 1
c
12
u
4
3u
3
+ 5u
2
3u + 2
25
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
4
y
3
+ 16y + 16
c
2
, c
4
, c
8
y
4
+ 3y
3
+ 4y
2
+ 4y + 4
c
3
y
4
7y
3
+ 19y
2
25y + 16
c
5
, c
9
(y 1)
4
c
6
, c
10
, c
11
y
4
+ 8y
3
+ 18y
2
+ 4y + 1
c
12
y
4
+ y
3
+ 11y
2
+ 11y + 4
26
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.219104 + 0.751390I
b = 1.00000
4.93480 2.00000
u = 1.00000
a = 0.219104 0.751390I
b = 1.00000
4.93480 2.00000
u = 1.00000
a = 1.28090 + 1.27441I
b = 1.00000
4.93480 2.00000
u = 1.00000
a = 1.28090 1.27441I
b = 1.00000
4.93480 2.00000
27
VI. I
u
6
= h−a
3
a
2
+ b a 1, a
4
+ a
3
+ a
2
+ 1, u + 1i
(i) Arc colorings
a
1
=
0
1
a
5
=
1
0
a
6
=
1
1
a
10
=
a
a
3
+ a
2
+ a + 1
a
9
=
a
3
a
2
1
a
3
+ a
2
+ a + 1
a
12
=
a
2
a
a
7
=
a
2
a
3
+ a
2
1
a
4
=
a
3
+ 1
a
2
a
3
=
a
2
a
3
2a
2
+ 1
a
2
=
a
3
a
2
1
2a
3
+ 2a
2
+ a
a
8
=
a
3
a
a
3
+ a 1
a
11
=
2a
2
a
a
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2
28
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
4
+ u
3
+ 3u
2
+ 2u + 1
c
2
, c
8
u
4
u
3
+ u
2
+ 1
c
3
u
4
3u
3
+ u
2
+ 2u + 1
c
4
, c
12
u
4
+ u
3
+ u
2
+ 1
c
5
(u 1)
4
c
6
, c
11
u
4
+ 2u
3
+ 3u
2
+ 3u + 2
c
9
u
4
+ 4u
3
+ 7u
2
+ 7u + 4
c
10
u
4
+ 3u
3
+ 6u
2
+ 8u + 8
29
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
4
+ 5y
3
+ 7y
2
+ 2y + 1
c
2
, c
4
, c
8
c
12
y
4
+ y
3
+ 3y
2
+ 2y + 1
c
3
y
4
7y
3
+ 15y
2
2y + 1
c
5
(y 1)
4
c
6
, c
11
y
4
+ 2y
3
+ y
2
+ 3y + 4
c
9
y
4
2y
3
+ y
2
+ 7y + 16
c
10
y
4
+ 3y
3
+ 4y
2
+ 32y + 64
30
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.351808 + 0.720342I
b = 0.452576 + 1.120870I
4.93480 2.00000
u = 1.00000
a = 0.351808 0.720342I
b = 0.452576 1.120870I
4.93480 2.00000
u = 1.00000
a = 0.851808 + 0.911292I
b = 1.54742 + 0.58565I
4.93480 2.00000
u = 1.00000
a = 0.851808 0.911292I
b = 1.54742 0.58565I
4.93480 2.00000
31
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
4
+ u
3
+ 3u
2
+ 2u + 1)
8
(u
4
+ 3u
3
+ 4u
2
+ 4u + 4)
· (u
25
10u
24
+ ··· 44u + 4)(u
29
+ 8u
28
+ ··· + 160u 64)
c
2
((u
4
u
3
+ u
2
+ 1)
8
)(u
4
+ u
3
+ 2u
2
+ 2u + 2)(u
25
+ 5u
23
+ ··· + 11u
2
+ 2)
· (u
29
+ 8u
28
+ ··· + 16u + 8)
c
3
(u
4
3u
3
+ u
2
+ 2u + 1)
8
(u
4
+ u
3
3u
2
u + 4)
· (u
25
+ 19u
24
+ ··· 21u + 41)(u
29
+ 15u
28
+ ··· + 496u + 64)
c
4
(u
4
u
3
+ 2u
2
2u + 2)(u
4
+ u
3
+ u
2
+ 1)(u
4
+ 3u
3
+ ··· + 10u + 11)
· (u
24
5u
23
+ ··· 19608u + 4792)(u
25
u
24
+ ··· 17u
2
+ 2)
· (u
29
+ 2u
28
+ ··· + 5u + 13)
c
5
, c
9
((u 1)
8
)(u
4
+ 4u
3
+ ··· + 7u + 4)(u
24
3u
23
+ ··· + 916u + 152)
· (u
25
+ 3u
23
+ ··· 4u 1)(u
29
+ 4u
28
+ ··· 41u
2
+ 1)
c
6
, c
10
(u
4
+ 4u
2
2u + 1)(u
4
+ 2u
3
+ ··· + 3u + 2)(u
4
+ 3u
3
+ ··· + 8u + 8)
· (u
24
6u
23
+ ··· 2820u + 421)(u
25
+ 7u
23
+ ··· u 1)
· (u
29
+ 24u
27
+ ··· + 5u + 1)
c
8
((u
4
u
3
+ u
2
+ 1)
8
)(u
4
+ u
3
+ 2u
2
+ 2u + 2)(u
25
+ 5u
23
+ ··· 11u
2
2)
· (u
29
+ 8u
28
+ ··· + 16u + 8)
c
11
(u
4
+ 4u
2
2u + 1)(u
4
+ 2u
3
+ ··· + 3u + 2)(u
4
+ 3u
3
+ ··· + 8u + 8)
· (u
24
6u
23
+ ··· 2820u + 421)(u
25
+ 7u
23
+ ··· u + 1)
· (u
29
+ 24u
27
+ ··· + 5u + 1)
c
12
(u
4
3u
3
+ ··· 3u + 2)(u
4
+ u
3
+ u
2
+ 1)
8
(u
25
+ 11u
24
+ ··· 7u
2
+ 1)
· (u
29
13u
28
+ ··· 100u + 8)
32
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
4
y
3
+ 16y + 16)(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
8
· (y
25
+ 18y
24
+ ··· 24y 16)(y
29
+ 24y
28
+ ··· + 94720y 4096)
c
2
, c
8
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
8
(y
4
+ 3y
3
+ 4y
2
+ 4y + 4)
· (y
25
+ 10y
24
+ ··· 44y 4)(y
29
+ 8y
28
+ ··· + 160y 64)
c
3
(y
4
7y
3
+ 15y
2
2y + 1)
8
(y
4
7y
3
+ 19y
2
25y + 16)
· (y
25
35y
24
+ ··· + 70715y 1681)
· (y
29
35y
28
+ ··· + 24832y 4096)
c
4
(y
4
+ y
3
+ 3y
2
+ 2y + 1)(y
4
+ 3y
3
+ 4y
2
+ 4y + 4)
· (y
4
+ 9y
3
+ 43y
2
+ 98y + 121)
· (y
24
+ 13y
23
+ ··· + 10329632y + 22963264)
· (y
25
+ 11y
24
+ ··· + 68y 4)(y
29
+ 30y
28
+ ··· 1041y 169)
c
5
, c
9
(y 1)
8
(y
4
2y
3
+ y
2
+ 7y + 16)
· (y
24
+ 9y
23
+ ··· 295504y + 23104)(y
25
+ 6y
24
+ ··· + 10y 1)
· (y
29
20y
28
+ ··· + 82y 1)
c
6
, c
10
, c
11
(y
4
+ 2y
3
+ y
2
+ 3y + 4)(y
4
+ 3y
3
+ 4y
2
+ 32y + 64)
· (y
4
+ 8y
3
+ 18y
2
+ 4y + 1)(y
24
+ 34y
23
+ ··· 101592y + 177241)
· (y
25
+ 14y
24
+ ··· + 17y 1)(y
29
+ 48y
28
+ ··· 15y 1)
c
12
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
8
(y
4
+ y
3
+ 11y
2
+ 11y + 4)
· (y
25
3y
24
+ ··· + 14y 1)(y
29
3y
28
+ ··· 560y 64)
33