12n
0637
(K12n
0637
)
A knot diagram
1
Linearized knot diagam
3 8 9 11 10 9 5 2 12 8 7 6
Solving Sequence
8,10 5,11
4 7 12 9 3 2 1 6
c
10
c
4
c
7
c
11
c
9
c
3
c
2
c
1
c
6
c
5
, c
8
, c
12
Ideals for irreducible components
2
of X
par
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
1
I
u
1
= h−35223725986u
21
+ 30523664755u
20
+ ··· + 210473051795b + 25821213245,
740868672496u
21
766689885741u
20
+ ··· + 210473051795a 869880690251,
u
22
u
21
+ ··· u + 1i
I
u
2
= h3.78529 × 10
20
u
19
4.63105 × 10
20
u
18
+ ··· + 8.62031 × 10
21
b 2.24738 × 10
21
,
2.73069 × 10
22
u
19
2.50595 × 10
22
u
18
+ ··· + 8.62031 × 10
21
a 1.80097 × 10
23
, u
20
u
19
+ ··· 7u + 1i
I
u
3
= h−3.35706 × 10
35
u
33
7.63609 × 10
35
u
32
+ ··· + 5.24183 × 10
36
b 4.09915 × 10
36
,
1.95717 × 10
37
u
33
+ 4.09915 × 10
36
u
32
+ ··· + 5.24183 × 10
36
a 6.08409 × 10
37
, u
34
9u
32
+ ··· 5u + 1i
I
u
4
= h16685766983482u
15
+ 6555188230121u
14
+ ··· + 453436720809281b + 250672039562051,
35828884147u
15
26710704549u
14
+ ··· + 766837175819a + 930772601969,
u
16
u
15
+ ··· 20u + 13i
I
u
5
= h3.61106 × 10
67
u
31
+ 1.33112 × 10
67
u
30
+ ··· + 5.05264 × 10
70
b 7.80220 × 10
69
,
2.81341 × 10
59
u
31
1.32370 × 10
59
u
30
+ ··· + 1.01984 × 10
63
a + 2.59788 × 10
62
,
u
32
+ u
31
+ ··· 1290u + 1501i
I
u
6
= hb u, a, u
4
+ u
3
+ 3u
2
+ 2u + 1i
I
u
7
= h11u
7
+ 19u
6
+ 58u
5
+ 65u
4
6u
3
34u
2
+ 2b + 9u 28, u
7
+ u
6
+ 4u
5
+ 2u
4
5u
3
3u
2
+ 2a + 3u 3,
u
8
+ u
7
+ 4u
6
+ 2u
5
5u
4
3u
3
+ 3u
2
3u + 2i
I
u
8
= hb, a + 1, u + 1i
* 8 irreducible components of dim
C
= 0, with total 137 representations.
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2
I.
I
u
1
= h−3.52×10
10
u
21
+3.05×10
10
u
20
+· · ·+2.10×10
11
b+2.58×10
10
, 7.41×
10
11
u
21
7.67×10
11
u
20
+· · ·+2.10×10
11
a8.70×10
11
, u
22
u
21
+· · ·u+1i
(i) Arc colorings
a
8
=
0
u
a
10
=
1
0
a
5
=
3.52002u
21
+ 3.64270u
20
+ ··· 40.0291u + 4.13298
0.167355u
21
0.145024u
20
+ ··· + 4.64270u 0.122682
a
11
=
1
u
2
a
4
=
3.52002u
21
+ 3.64270u
20
+ ··· 39.0291u + 4.13298
0.167355u
21
0.145024u
20
+ ··· + 4.64270u 0.122682
a
7
=
7.95997u
21
+ 8.71460u
20
+ ··· 67.9417u + 11.7340
0.832645u
21
0.854976u
20
+ ··· + 13.3573u 0.877318
a
12
=
3.13298u
21
+ 0.612962u
20
+ ··· 16.2045u 19.8962
0.122682u
21
+ 0.0446732u
20
+ ··· + 0.612962u + 3.52002
a
9
=
7.72374u
21
3.11644u
20
+ ··· + 40.9995u + 24.8315
0.754636u
21
+ 0.0893465u
20
+ ··· 3.77408u 7.95997
a
3
=
2.10661u
21
+ 3.86613u
20
+ ··· + 4.19416u + 30.2779
4.12150u
21
5.66719u
20
+ ··· + 21.5571u 12.2542
a
2
=
2.10661u
21
+ 3.86613u
20
+ ··· + 4.19416u + 30.2779
4.99760u
21
7.47535u
20
+ ··· + 25.4233u 18.2269
a
1
=
2.98797u
21
0.624862u
20
+ ··· + 15.5468u + 16.5435
0.145013u
21
0.0118996u
20
+ ··· 0.657635u 3.35266
a
6
=
3.35266u
21
+ 3.49767u
20
+ ··· 35.3864u + 4.01030
0.167355u
21
0.145024u
20
+ ··· + 4.64270u 0.122682
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
1913935713454
210473051795
u
21
1492818570442
210473051795
u
20
+ ···
6526154909884
210473051795
u
14593217553892
210473051795
3
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
22
+ 8u
21
+ ··· + 160u + 64
c
2
, c
8
u
22
+ 6u
21
+ ··· + 32u + 8
c
3
u
22
6u
21
+ ··· 5072u + 3880
c
4
, c
6
, c
10
c
12
u
22
u
21
+ ··· u + 1
c
5
, c
11
u
22
u
21
+ ··· 16u + 10
c
7
, c
9
u
22
9u
21
+ ··· 15u + 19
4
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
22
+ 12y
21
+ ··· + 28160y + 4096
c
2
, c
8
y
22
+ 8y
21
+ ··· + 160y + 64
c
3
y
22
+ 16y
21
+ ··· + 18242976y + 15054400
c
4
, c
6
, c
10
c
12
y
22
+ 21y
21
+ ··· + 35y + 1
c
5
, c
11
y
22
+ y
21
+ ··· + 624y + 100
c
7
, c
9
y
22
9y
21
+ ··· 187y + 361
5
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.251396 + 1.197270I
a = 0.727101 + 0.853670I
b = 0.733815 0.410169I
1.69375 1.58224I 2.92761 + 2.99168I
u = 0.251396 1.197270I
a = 0.727101 0.853670I
b = 0.733815 + 0.410169I
1.69375 + 1.58224I 2.92761 2.99168I
u = 0.439138 + 1.208940I
a = 0.366754 + 0.753125I
b = 0.825819 + 0.642867I
7.22176 + 4.64537I 1.48411 2.36378I
u = 0.439138 1.208940I
a = 0.366754 0.753125I
b = 0.825819 0.642867I
7.22176 4.64537I 1.48411 + 2.36378I
u = 0.100425 + 0.610392I
a = 0.598286 0.326486I
b = 0.076424 + 0.802089I
0.049452 + 1.407930I 0.88049 5.93296I
u = 0.100425 0.610392I
a = 0.598286 + 0.326486I
b = 0.076424 0.802089I
0.049452 1.407930I 0.88049 + 5.93296I
u = 0.311341 + 1.349370I
a = 0.386640 + 0.716640I
b = 0.957311 + 0.438847I
8.03816 + 1.82472I 0.36555 2.90365I
u = 0.311341 1.349370I
a = 0.386640 0.716640I
b = 0.957311 0.438847I
8.03816 1.82472I 0.36555 + 2.90365I
u = 0.70785 + 1.27677I
a = 0.942108 + 0.435063I
b = 0.985198 0.917340I
2.15736 11.05600I 5.86304 + 8.74726I
u = 0.70785 1.27677I
a = 0.942108 0.435063I
b = 0.985198 + 0.917340I
2.15736 + 11.05600I 5.86304 8.74726I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.43272 + 1.42172I
a = 0.745026 + 0.586778I
b = 1.077150 0.571146I
2.42448 + 6.49307I 0.75771 5.60630I
u = 0.43272 1.42172I
a = 0.745026 0.586778I
b = 1.077150 + 0.571146I
2.42448 6.49307I 0.75771 + 5.60630I
u = 0.131155 + 0.475245I
a = 1.59000 1.04889I
b = 0.069853 + 0.892314I
0.69331 + 1.97766I 2.32963 3.06093I
u = 0.131155 0.475245I
a = 1.59000 + 1.04889I
b = 0.069853 0.892314I
0.69331 1.97766I 2.32963 + 3.06093I
u = 0.145985 + 0.422253I
a = 2.38098 1.30459I
b = 0.066959 + 0.920596I
2.79098 6.48658I 4.59769 + 4.99587I
u = 0.145985 0.422253I
a = 2.38098 + 1.30459I
b = 0.066959 0.920596I
2.79098 + 6.48658I 4.59769 4.99587I
u = 0.062233 + 0.424223I
a = 1.23180 2.37884I
b = 0.029071 + 0.908159I
4.30511 + 0.52403I 12.36500 2.34222I
u = 0.062233 0.424223I
a = 1.23180 + 2.37884I
b = 0.029071 0.908159I
4.30511 0.52403I 12.36500 + 2.34222I
u = 1.05080 + 1.58014I
a = 0.749692 + 0.219224I
b = 1.36686 1.21476I
7.00864 + 11.78040I 2.49367 5.42252I
u = 1.05080 1.58014I
a = 0.749692 0.219224I
b = 1.36686 + 1.21476I
7.00864 11.78040I 2.49367 + 5.42252I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.17544 + 1.50294I
a = 0.769890 + 0.154115I
b = 1.30624 1.35244I
5.9137 18.4120I 4.00000 + 9.61591I
u = 1.17544 1.50294I
a = 0.769890 0.154115I
b = 1.30624 + 1.35244I
5.9137 + 18.4120I 4.00000 9.61591I
8
II.
I
u
2
= h3.79 × 10
20
u
19
4.63 × 10
20
u
18
+ · · · + 8.62 × 10
21
b 2.25 × 10
21
, 2.73 ×
10
22
u
19
2.51×10
22
u
18
+· · ·+8.62×10
21
a1.80×10
23
, u
20
u
19
+· · ·7u+1i
(i) Arc colorings
a
8
=
0
u
a
10
=
1
0
a
5
=
3.16774u
19
+ 2.90704u
18
+ ··· + 10.9832u + 20.8921
0.0439113u
19
+ 0.0537225u
18
+ ··· + 2.34279u + 0.260708
a
11
=
1
u
2
a
4
=
3.16774u
19
+ 2.90704u
18
+ ··· + 11.9832u + 20.8921
0.0439113u
19
+ 0.0537225u
18
+ ··· + 2.34279u + 0.260708
a
7
=
8.81122u
19
+ 7.79546u
18
+ ··· 18.5918u + 54.1639
0.175015u
19
+ 0.186912u
18
+ ··· + 4.04373u + 1.27646
a
12
=
3.92566u
19
3.36351u
18
+ ··· + 33.8425u 29.7066
0.0217085u
19
0.0143026u
18
+ ··· + 0.00468521u 0.781074
a
9
=
2.88820u
19
2.46456u
18
+ ··· + 26.3232u 20.1143
0.0364007u
19
0.0247875u
18
+ ··· + 0.0259089u 0.598653
a
3
=
1.64440u
19
1.25672u
18
+ ··· + 38.9478u 7.71164
0.0771122u
19
0.0734388u
18
+ ··· + 0.753454u 0.595866
a
2
=
1.64440u
19
1.25672u
18
+ ··· + 38.9478u 7.71164
0.122553u
19
0.0983998u
18
+ ··· + 1.82280u 0.983543
a
1
=
1.28627u
19
1.10467u
18
+ ··· + 8.75002u 13.9350
0.0118974u
19
+ 0.0110797u
18
+ ··· 0.0513570u 0.175015
a
6
=
3.21165u
19
+ 2.96076u
18
+ ··· + 13.3259u + 21.1528
0.0439113u
19
+ 0.0537225u
18
+ ··· + 2.34279u + 0.260708
(ii) Obstruction class = 1
(iii) Cusp Shapes =
97906072790078772930140
8620310934921930687151
u
19
+
81524634991414853459581
8620310934921930687151
u
18
+ ···
1059865978912088574268036
8620310934921930687151
u +
616271317183349139490199
8620310934921930687151
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
10
+ 4u
9
+ ··· 12u + 16)
2
c
2
, c
8
(u
10
+ 4u
9
+ 10u
8
+ 16u
7
+ 19u
6
+ 15u
5
+ 6u
4
5u
3
11u
2
10u 4)
2
c
3
(u
10
4u
9
+ ··· 66u 52)
2
c
4
, c
6
, c
10
c
12
u
20
u
19
+ ··· 7u + 1
c
5
, c
11
(u
10
4u
8
u
7
+ 10u
6
+ 3u
5
12u
4
4u
3
+ 6u
2
+ u 1)
2
c
7
, c
9
u
20
7u
19
+ ··· + 710u 71
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
10
+ 4y
9
+ ··· 1008y + 256)
2
c
2
, c
8
(y
10
+ 4y
9
+ ··· 12y + 16)
2
c
3
(y
10
+ 4y
9
+ ··· 14028y + 2704)
2
c
4
, c
6
, c
10
c
12
y
20
+ 3y
19
+ ··· 77y + 1
c
5
, c
11
(y
10
8y
9
+ ··· 13y + 1)
2
c
7
, c
9
y
20
7y
19
+ ··· 29394y + 5041
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.606294 + 1.022320I
a = 0.506435 + 1.185730I
b = 1.20672 + 0.84674I
6.80818 10.55520I 2.80651 + 7.76192I
u = 0.606294 1.022320I
a = 0.506435 1.185730I
b = 1.20672 0.84674I
6.80818 + 10.55520I 2.80651 7.76192I
u = 0.410689 + 1.146110I
a = 0.911522 + 0.251562I
b = 1.21747
3.96203 1.71627 + 0.I
u = 0.410689 1.146110I
a = 0.911522 0.251562I
b = 1.21747
3.96203 1.71627 + 0.I
u = 0.447983 + 1.156950I
a = 0.650705 + 0.989358I
b = 1.31797 + 0.70573I
7.99409 + 4.11330I 0.72706 2.84018I
u = 0.447983 1.156950I
a = 0.650705 0.989358I
b = 1.31797 0.70573I
7.99409 4.11330I 0.72706 + 2.84018I
u = 0.050609 + 0.749544I
a = 1.71190 + 0.54431I
b = 0.966704 + 0.315261I
0.07213 3.52780I 2.13233 + 4.34006I
u = 0.050609 0.749544I
a = 1.71190 0.54431I
b = 0.966704 0.315261I
0.07213 + 3.52780I 2.13233 4.34006I
u = 0.884394 + 1.054470I
a = 0.719695 + 0.083108I
b = 0.966704 0.315261I
0.07213 + 3.52780I 2.13233 4.34006I
u = 0.884394 1.054470I
a = 0.719695 0.083108I
b = 0.966704 + 0.315261I
0.07213 3.52780I 2.13233 + 4.34006I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.53443
a = 0.408700
b = 0.572155
3.24417 9.61450
u = 1.70396 + 0.20280I
a = 0.406335 + 0.011690I
b = 0.532805 0.044567I
6.86440 4.53571I 10.5005 + 34.9465I
u = 1.70396 0.20280I
a = 0.406335 0.011690I
b = 0.532805 + 0.044567I
6.86440 + 4.53571I 10.5005 34.9465I
u = 0.213343
a = 7.88331
b = 0.572155
3.24417 9.61450
u = 1.03765 + 1.47270I
a = 0.661123 + 0.144524I
b = 1.31797 0.70573I
7.99409 4.11330I 0.72706 + 2.84018I
u = 1.03765 1.47270I
a = 0.661123 0.144524I
b = 1.31797 + 0.70573I
7.99409 + 4.11330I 0.72706 2.84018I
u = 1.16158 + 1.41196I
a = 0.665605 + 0.116987I
b = 1.20672 0.84674I
6.80818 + 10.55520I 2.80651 7.76192I
u = 1.16158 1.41196I
a = 0.665605 0.116987I
b = 1.20672 + 0.84674I
6.80818 10.55520I 2.80651 + 7.76192I
u = 0.159854 + 0.046896I
a = 11.26340 7.33066I
b = 0.532805 + 0.044567I
6.86440 + 4.53571I 10.5005 34.9465I
u = 0.159854 0.046896I
a = 11.26340 + 7.33066I
b = 0.532805 0.044567I
6.86440 4.53571I 10.5005 + 34.9465I
13
III.
I
u
3
= h−3.36×10
35
u
33
7.64×10
35
u
32
+· · ·+5.24×10
36
b4.10×10
36
, 1.96×
10
37
u
33
+4.10×10
36
u
32
+· · ·+5.24×10
36
a6.08×10
37
, u
34
9u
32
+· · ·5u+1i
(i) Arc colorings
a
8
=
0
u
a
10
=
1
0
a
5
=
3.73375u
33
0.782006u
32
+ ··· 25.6210u + 11.6068
0.0640435u
33
+ 0.145676u
32
+ ··· 1.17628u + 0.782006
a
11
=
1
u
2
a
4
=
3.73375u
33
0.782006u
32
+ ··· 26.6210u + 11.6068
0.0640435u
33
+ 0.145676u
32
+ ··· 1.17628u + 0.782006
a
7
=
8.90770u
33
2.14572u
32
+ ··· 71.2828u + 27.4824
0.376603u
33
+ 0.0354177u
32
+ ··· 0.644601u + 1.36371
a
12
=
4.42221u
33
0.993348u
32
+ ··· 37.1005u + 14.3537
0.0610815u
33
0.112187u
32
+ ··· + 1.07701u + 0.552701
a
9
=
3.06716u
33
+ 0.825714u
32
+ ··· + 27.3561u 9.54342
0.232957u
33
+ 0.180886u
32
+ ··· 1.92567u 0.0777394
a
3
=
1.55716u
33
+ 0.844911u
32
+ ··· + 11.9349u 1.31495
0.0686076u
33
0.182006u
32
+ ··· + 3.42735u 1.07782
a
2
=
1.55716u
33
+ 0.844911u
32
+ ··· + 11.9349u 1.31495
0.202905u
33
0.0632946u
32
+ ··· + 6.09474u 1.92273
a
1
=
2.08828u
33
+ 0.392969u
32
+ ··· + 13.8037u 7.12091
0.0856981u
33
0.102474u
32
+ ··· + 2.98707u 0.747975
a
6
=
3.66970u
33
0.636330u
32
+ ··· 26.7973u + 12.3888
0.0640435u
33
+ 0.145676u
32
+ ··· 1.17628u + 0.782006
(ii) Obstruction class = 1
(iii) Cusp Shapes = 20.8441u
33
+ 4.37870u
32
+ ··· + 173.006u 75.6418
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
17
8u
16
+ ··· 11u + 2)
2
c
2
, c
8
u
34
+ 8u
32
+ ··· 11u
2
2
c
3
u
34
+ 12u
32
+ ··· 99u
2
2
c
4
, c
10
u
34
9u
32
+ ··· 5u + 1
c
5
, c
11
u
34
+ 3u
32
+ ··· + 31u
2
2
c
6
, c
12
u
34
9u
32
+ ··· + 5u + 1
c
7
u
34
+ 18u
33
+ ··· + 10u + 1
c
9
u
34
18u
33
+ ··· 10u + 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
17
+ 10y
16
+ ··· 11y 4)
2
c
2
, c
8
(y
17
+ 8y
16
+ ··· 11y 2)
2
c
3
(y
17
+ 12y
16
+ ··· 99y 2)
2
c
4
, c
6
, c
10
c
12
y
34
18y
33
+ ··· 5y + 1
c
5
, c
11
(y
17
+ 3y
16
+ ··· + 31y 2)
2
c
7
, c
9
y
34
14y
33
+ ··· 4y + 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.948002 + 0.313646I
a = 1.49270 + 0.75341I
b = 0.201379 + 1.177010I
3.90984 7.35529I 10.7026 + 11.0707I
u = 0.948002 0.313646I
a = 1.49270 0.75341I
b = 0.201379 1.177010I
3.90984 + 7.35529I 10.7026 11.0707I
u = 0.956410 + 0.604090I
a = 1.388120 + 0.148389I
b = 0.364697 + 1.081480I
4.51641 1.30867I 12.27157 + 0.31860I
u = 0.956410 0.604090I
a = 1.388120 0.148389I
b = 0.364697 1.081480I
4.51641 + 1.30867I 12.27157 0.31860I
u = 0.301826 + 0.794742I
a = 0.242452 + 0.645424I
b = 0.480417 1.259920I
3.12305 + 4.90974I 4.98224 0.13853I
u = 0.301826 0.794742I
a = 0.242452 0.645424I
b = 0.480417 + 1.259920I
3.12305 4.90974I 4.98224 + 0.13853I
u = 1.127990 + 0.273851I
a = 1.138540 + 0.718861I
b = 0.208856 + 1.290280I
2.73299 + 3.07671I 3.59376 6.57908I
u = 1.127990 0.273851I
a = 1.138540 0.718861I
b = 0.208856 1.290280I
2.73299 3.07671I 3.59376 + 6.57908I
u = 0.070405 + 0.815044I
a = 0.532860 + 0.628017I
b = 0.208856 1.290280I
2.73299 + 3.07671I 3.59376 6.57908I
u = 0.070405 0.815044I
a = 0.532860 0.628017I
b = 0.208856 + 1.290280I
2.73299 3.07671I 3.59376 + 6.57908I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.251748 + 1.192390I
a = 1.025750 0.598178I
b = 1.286020 + 0.236008I
4.34137 0.62662I 0.702844 + 0.664865I
u = 0.251748 1.192390I
a = 1.025750 + 0.598178I
b = 1.286020 0.236008I
4.34137 + 0.62662I 0.702844 0.664865I
u = 1.044090 + 0.683860I
a = 0.761913 + 0.166704I
b = 0.807885 + 0.507938I
1.39035 + 4.13256I 8.96641 7.21181I
u = 1.044090 0.683860I
a = 0.761913 0.166704I
b = 0.807885 0.507938I
1.39035 4.13256I 8.96641 + 7.21181I
u = 0.647873 + 0.299417I
a = 1.00359 + 1.26631I
b = 0.807885 + 0.507938I
1.39035 4.13256I 8.96641 + 7.21181I
u = 0.647873 0.299417I
a = 1.00359 1.26631I
b = 0.807885 0.507938I
1.39035 + 4.13256I 8.96641 7.21181I
u = 1.199710 + 0.613641I
a = 1.068440 + 0.282667I
b = 0.480417 + 1.259920I
3.12305 + 4.90974I 4.98224 + 0.I
u = 1.199710 0.613641I
a = 1.068440 0.282667I
b = 0.480417 1.259920I
3.12305 4.90974I 4.98224 + 0.I
u = 0.067240 + 0.640701I
a = 0.90142 + 1.12971I
b = 0.201379 1.177010I
3.90984 7.35529I 10.7026 + 11.0707I
u = 0.067240 0.640701I
a = 0.90142 1.12971I
b = 0.201379 + 1.177010I
3.90984 + 7.35529I 10.7026 11.0707I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.504150 + 1.265790I
a = 0.961784 0.364583I
b = 1.335370 + 0.453210I
4.40017 + 6.90997I 0. 5.88125I
u = 0.504150 1.265790I
a = 0.961784 + 0.364583I
b = 1.335370 0.453210I
4.40017 6.90997I 0. + 5.88125I
u = 0.604342
a = 2.59153
b = 0.342161
3.55226 16.8940
u = 1.39868
a = 0.540058
b = 0.342161
3.55226 16.8940
u = 0.179282 + 0.553299I
a = 0.47174 + 1.58611I
b = 0.364697 1.081480I
4.51641 1.30867I 12.27157 + 0.31860I
u = 0.179282 0.553299I
a = 0.47174 1.58611I
b = 0.364697 + 1.081480I
4.51641 + 1.30867I 12.27157 0.31860I
u = 1.56336 + 0.01828I
a = 0.097753 + 0.190650I
b = 1.335370 + 0.453210I
4.40017 6.90997I 0. + 5.88125I
u = 1.56336 0.01828I
a = 0.097753 0.190650I
b = 1.335370 0.453210I
4.40017 + 6.90997I 0. 5.88125I
u = 0.329313 + 0.165692I
a = 4.37347 4.17301I
b = 0.480307 0.026404I
6.91964 + 4.44078I 26.1531 + 27.7299I
u = 0.329313 0.165692I
a = 4.37347 + 4.17301I
b = 0.480307 + 0.026404I
6.91964 4.44078I 26.1531 27.7299I
19
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.61858 + 0.22328I
a = 0.166497 + 0.131888I
b = 1.286020 + 0.236008I
4.34137 + 0.62662I 0
u = 1.61858 0.22328I
a = 0.166497 0.131888I
b = 1.286020 0.236008I
4.34137 0.62662I 0
u = 1.67995 + 0.23279I
a = 0.420857 0.044359I
b = 0.480307 0.026404I
6.91964 4.44078I 0
u = 1.67995 0.23279I
a = 0.420857 + 0.044359I
b = 0.480307 + 0.026404I
6.91964 + 4.44078I 0
20
IV. I
u
4
= h1.67 × 10
13
u
15
+ 6.56 × 10
12
u
14
+ · · · + 4.53 × 10
14
b + 2.51 ×
10
14
, 3.58 × 10
10
u
15
2.67 × 10
10
u
14
+ · · · + 7.67 × 10
11
a + 9.31 ×
10
11
, u
16
u
15
+ · · · 20u + 13i
(i) Arc colorings
a
8
=
0
u
a
10
=
1
0
a
5
=
0.0467229u
15
+ 0.0348323u
14
+ ··· + 0.00279962u 1.21378
0.0367984u
15
0.0144567u
14
+ ··· 0.0545409u 0.552827
a
11
=
1
u
2
a
4
=
0.00998312u
15
+ 0.0408553u
14
+ ··· 1.07545u 0.706390
0.00626482u
15
0.0388182u
14
+ ··· 0.331023u + 0.106053
a
7
=
0.123646u
15
0.0420908u
14
+ ··· + 0.00279962u 2.75224
0.0640970u
15
+ 0.0544416u
14
+ ··· 0.865462u + 1.19024
a
12
=
0.120585u
15
+ 0.0439717u
14
+ ··· + 0.747958u + 2.30975
0.0815552u
15
0.0616476u
14
+ ··· 0.279323u 0.607398
a
9
=
0.0915566u
15
0.0274596u
14
+ ··· 1.75803u 0.965670
0.0815552u
15
+ 0.0616476u
14
+ ··· + 0.279323u + 1.60740
a
3
=
0.114902u
15
0.0966243u
14
+ ··· + 0.137579u 0.901552
0.0610974u
15
0.133458u
14
+ ··· 0.754389u + 1.02422
a
2
=
0.114902u
15
0.0966243u
14
+ ··· + 0.137579u 0.901552
0.0568444u
15
0.0636001u
14
+ ··· 1.88256u + 0.786613
a
1
=
0.0902852u
15
0.105232u
14
+ ··· + 0.820160u 2.18073
0.0303001u
15
0.0612608u
14
+ ··· + 1.56812u + 0.129018
a
6
=
0.00992449u
15
+ 0.0203756u
14
+ ··· 0.0517413u 1.76661
0.0367984u
15
0.0144567u
14
+ ··· 0.0545409u 0.552827
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
146434412728192
453436720809281
u
15
84018496727016
453436720809281
u
14
+ ···
5115840542393260
453436720809281
u
55929004883582
453436720809281
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
4
+ u
3
+ 3u
2
+ 2u + 1)
4
c
2
, c
8
(u
4
u
3
+ u
2
+ 1)
4
c
3
(u
4
+ u
3
+ 5u
2
u + 2)
4
c
4
, c
6
, c
10
c
12
u
16
u
15
+ ··· 20u + 13
c
5
, c
11
u
16
3u
15
+ ··· + 198u + 97
c
7
, c
9
(u
2
+ u + 1)
8
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
4
c
2
, c
8
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
4
c
3
(y
4
+ 9y
3
+ 31y
2
+ 19y + 4)
4
c
4
, c
6
, c
10
c
12
y
16
+ 7y
15
+ ··· 400y + 169
c
5
, c
11
y
16
13y
15
+ ··· 37264y + 9409
c
7
, c
9
(y
2
+ y + 1)
8
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.092007 + 1.034470I
a = 0.787948 0.553421I
b = 2.24681 1.28233I
6.79074 + 7.22373I 1.82674 9.49300I
u = 0.092007 1.034470I
a = 0.787948 + 0.553421I
b = 2.24681 + 1.28233I
6.79074 7.22373I 1.82674 + 9.49300I
u = 0.239797 + 0.921033I
a = 0.748218 0.737673I
b = 1.96980 1.53526I
6.79074 0.89580I 1.82674 + 4.36340I
u = 0.239797 0.921033I
a = 0.748218 + 0.737673I
b = 1.96980 + 1.53526I
6.79074 + 0.89580I 1.82674 4.36340I
u = 0.639205 + 0.691048I
a = 1.036040 + 0.234778I
b = 1.55457 + 0.29681I
0.21101 + 5.47487I 1.82674 11.83695I
u = 0.639205 0.691048I
a = 1.036040 0.234778I
b = 1.55457 0.29681I
0.21101 5.47487I 1.82674 + 11.83695I
u = 0.811044 + 0.687008I
a = 0.885567 + 0.317657I
b = 0.759110 + 0.954489I
0.21101 + 2.64466I 1.82674 2.01946I
u = 0.811044 0.687008I
a = 0.885567 0.317657I
b = 0.759110 0.954489I
0.21101 2.64466I 1.82674 + 2.01946I
u = 1.275710 + 0.602283I
a = 0.582586 + 0.403811I
b = 0.522944 + 0.714888I
0.21101 5.47487I 1.82674 + 11.83695I
u = 1.275710 0.602283I
a = 0.582586 0.403811I
b = 0.522944 0.714888I
0.21101 + 5.47487I 1.82674 11.83695I
24
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.569666 + 0.091399I
a = 1.09347 + 1.34479I
b = 0.605365 0.147963I
0.21101 2.64466I 1.82674 + 2.01946I
u = 0.569666 0.091399I
a = 1.09347 1.34479I
b = 0.605365 + 0.147963I
0.21101 + 2.64466I 1.82674 2.01946I
u = 1.05226 + 1.78810I
a = 0.481970 + 0.004004I
b = 0.782616 + 0.884305I
6.79074 + 0.89580I 1.82674 4.36340I
u = 1.05226 1.78810I
a = 0.481970 0.004004I
b = 0.782616 0.884305I
6.79074 0.89580I 1.82674 + 4.36340I
u = 1.30493 + 1.71989I
a = 0.459558 + 0.057963I
b = 0.744996 + 0.955578I
6.79074 7.22373I 1.82674 + 9.49300I
u = 1.30493 1.71989I
a = 0.459558 0.057963I
b = 0.744996 0.955578I
6.79074 + 7.22373I 1.82674 9.49300I
25
V. I
u
5
= h3.61 × 10
67
u
31
+ 1.33 × 10
67
u
30
+ · · · + 5.05 × 10
70
b 7.80 ×
10
69
, 2.81 × 10
59
u
31
1.32 × 10
59
u
30
+ · · · + 1.02 × 10
63
a + 2.60 ×
10
62
, u
32
+ u
31
+ · · · 1290u + 1501i
(i) Arc colorings
a
8
=
0
u
a
10
=
1
0
a
5
=
0.000275867u
31
+ 0.000129795u
30
+ ··· 1.94837u 0.254733
0.000714688u
31
0.000263450u
30
+ ··· + 1.30103u + 0.154418
a
11
=
1
u
2
a
4
=
0.000372259u
31
0.000239040u
30
+ ··· 0.0448239u 0.319569
0.000812029u
31
0.000379010u
30
+ ··· + 2.63416u 0.264798
a
7
=
0.000214542u
31
+ 0.000103732u
30
+ ··· + 1.76603u + 0.160004
0.000541250u
31
+ 0.000557760u
30
+ ··· + 0.234939u 0.714606
a
12
=
0.000104855u
31
+ 0.000223448u
30
+ ··· + 0.402197u + 1.00171
0.000587979u
31
+ 0.000584757u
30
+ ··· 0.413622u + 0.911091
a
9
=
0.0000192851u
31
+ 0.000101444u
30
+ ··· 1.67116u 0.632751
0.00100745u
31
0.000782374u
30
+ ··· + 0.820704u 0.169014
a
3
=
0.000684276u
31
0.000635526u
30
+ ··· 0.323358u + 0.130143
0.000925024u
31
0.000629723u
30
+ ··· + 4.84174u + 0.562738
a
2
=
0.000684276u
31
0.000635526u
30
+ ··· 0.323358u + 0.130143
0.00111240u
31
0.000654767u
30
+ ··· + 5.93173u + 0.489565
a
1
=
0.000409598u
31
0.000309788u
30
+ ··· 1.27330u 0.416102
0.00130652u
31
0.000909626u
30
+ ··· + 2.57060u + 0.0601876
a
6
=
0.000438821u
31
0.000133655u
30
+ ··· 0.647334u 0.100315
0.000714688u
31
0.000263450u
30
+ ··· + 1.30103u + 0.154418
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.00301162u
31
+ 0.00331224u
30
+ ··· + 2.94189u 18.0165
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
4
+ u
3
+ 3u
2
+ 2u + 1)
8
c
2
, c
8
(u
4
u
3
+ u
2
+ 1)
8
c
3
(u
4
+ u
3
+ 5u
2
u + 2)
8
c
4
, c
6
, c
10
c
12
u
32
+ u
31
+ ··· 1290u + 1501
c
5
, c
11
(u
16
+ u
15
+ ··· + 2u + 19)
2
c
7
, c
9
(u
4
+ u
3
2u + 1)
8
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
8
c
2
, c
8
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
8
c
3
(y
4
+ 9y
3
+ 31y
2
+ 19y + 4)
8
c
4
, c
6
, c
10
c
12
y
32
23y
31
+ ··· 13272834y + 2253001
c
5
, c
11
(y
16
y
15
+ ··· 2512y + 361)
2
c
7
, c
9
(y
4
y
3
+ 6y
2
4y + 1)
8
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.933125 + 0.345373I
a = 1.42512 + 0.60180I
b = 0.507415 + 1.111340I
3.50087 2.64466I 13.82674 + 2.01946I
u = 0.933125 0.345373I
a = 1.42512 0.60180I
b = 0.507415 1.111340I
3.50087 + 2.64466I 13.82674 2.01946I
u = 0.465677 + 0.912383I
a = 1.41419 0.50791I
b = 0.505216 + 0.080628I
3.50087 + 0.89580I 10.17326 4.36340I
u = 0.465677 0.912383I
a = 1.41419 + 0.50791I
b = 0.505216 0.080628I
3.50087 0.89580I 10.17326 + 4.36340I
u = 1.105300 + 0.270519I
a = 0.570130 0.030308I
b = 1.91342 1.12465I
3.50087 7.22373I 10.17326 + 9.49300I
u = 1.105300 0.270519I
a = 0.570130 + 0.030308I
b = 1.91342 + 1.12465I
3.50087 + 7.22373I 10.17326 9.49300I
u = 0.672655 + 0.976570I
a = 1.268540 0.275121I
b = 0.621358 + 0.257578I
3.50087 7.22373I 10.17326 + 9.49300I
u = 0.672655 0.976570I
a = 1.268540 + 0.275121I
b = 0.621358 0.257578I
3.50087 + 7.22373I 10.17326 9.49300I
u = 1.140760 + 0.351108I
a = 0.544306 + 0.002963I
b = 1.90215 0.76605I
3.50087 + 0.89580I 10.17326 4.36340I
u = 1.140760 0.351108I
a = 0.544306 0.002963I
b = 1.90215 + 0.76605I
3.50087 0.89580I 10.17326 + 4.36340I
29
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.190410 + 0.259439I
a = 1.083940 + 0.648970I
b = 0.129086 + 1.200110I
3.50087 + 2.64466I 13.82674 2.01946I
u = 1.190410 0.259439I
a = 1.083940 0.648970I
b = 0.129086 1.200110I
3.50087 2.64466I 13.82674 + 2.01946I
u = 1.166990 + 0.483595I
a = 1.139860 + 0.430615I
b = 0.387825 + 1.018230I
3.50087 5.47487I 13.8267 + 11.8369I
u = 1.166990 0.483595I
a = 1.139860 0.430615I
b = 0.387825 1.018230I
3.50087 + 5.47487I 13.8267 11.8369I
u = 0.662252 + 0.286911I
a = 0.687346 + 0.581256I
b = 0.129086 1.200110I
3.50087 2.64466I 13.82674 + 2.01946I
u = 0.662252 0.286911I
a = 0.687346 0.581256I
b = 0.129086 + 1.200110I
3.50087 + 2.64466I 13.82674 2.01946I
u = 0.594845 + 1.145980I
a = 0.350970 + 0.360556I
b = 0.507415 1.111340I
3.50087 + 2.64466I 13.82674 2.01946I
u = 0.594845 1.145980I
a = 0.350970 0.360556I
b = 0.507415 + 1.111340I
3.50087 2.64466I 13.82674 + 2.01946I
u = 1.187550 + 0.754071I
a = 1.074840 + 0.204836I
b = 0.62920 + 1.61384I
3.50087 + 5.47487I 13.8267 11.8369I
u = 1.187550 0.754071I
a = 1.074840 0.204836I
b = 0.62920 1.61384I
3.50087 5.47487I 13.8267 + 11.8369I
30
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.06626 + 1.43374I
a = 0.769490 0.746980I
b = 1.90215 + 0.76605I
3.50087 0.89580I 10.17326 + 4.36340I
u = 0.06626 1.43374I
a = 0.769490 + 0.746980I
b = 1.90215 0.76605I
3.50087 + 0.89580I 10.17326 4.36340I
u = 0.353208 + 0.331710I
a = 1.200900 + 0.596300I
b = 0.62920 1.61384I
3.50087 5.47487I 13.8267 + 11.8369I
u = 0.353208 0.331710I
a = 1.200900 0.596300I
b = 0.62920 + 1.61384I
3.50087 + 5.47487I 13.8267 11.8369I
u = 0.78661 + 1.34122I
a = 0.098220 + 0.406126I
b = 0.387825 1.018230I
3.50087 + 5.47487I 13.8267 11.8369I
u = 0.78661 1.34122I
a = 0.098220 0.406126I
b = 0.387825 + 1.018230I
3.50087 5.47487I 13.8267 + 11.8369I
u = 0.34699 + 1.54691I
a = 0.803463 0.545068I
b = 1.91342 + 1.12465I
3.50087 + 7.22373I 10.17326 9.49300I
u = 0.34699 1.54691I
a = 0.803463 + 0.545068I
b = 1.91342 1.12465I
3.50087 7.22373I 10.17326 + 9.49300I
u = 2.54575 + 0.33352I
a = 0.230694 + 0.103966I
b = 0.505216 0.080628I
3.50087 0.89580I 0
u = 2.54575 0.33352I
a = 0.230694 0.103966I
b = 0.505216 + 0.080628I
3.50087 + 0.89580I 0
31
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 2.55009 + 0.74890I
a = 0.204631 + 0.133712I
b = 0.621358 0.257578I
3.50087 + 7.22373I 0
u = 2.55009 0.74890I
a = 0.204631 0.133712I
b = 0.621358 + 0.257578I
3.50087 7.22373I 0
32
VI. I
u
6
= hb u, a, u
4
+ u
3
+ 3u
2
+ 2u + 1i
(i) Arc colorings
a
8
=
0
u
a
10
=
1
0
a
5
=
0
u
a
11
=
1
u
2
a
4
=
u
u
3
+ u
a
7
=
0
u
a
12
=
1
0
a
9
=
1
0
a
3
=
u
3
+ 2u
u
3
+ u
a
2
=
u
3
+ 2u
u
3
+ u
2
+ 2u + 1
a
1
=
u
2
1
u
2
a
6
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
4u
2
12u 6
33
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
6
, c
10
, c
11
c
12
u
4
+ u
3
+ 3u
2
+ 2u + 1
c
2
, c
8
u
4
+ u
3
+ u
2
+ 1
c
3
u
4
u
3
+ 5u
2
+ u + 2
c
7
, c
9
u
4
34
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
6
, c
10
, c
11
c
12
y
4
+ 5y
3
+ 7y
2
+ 2y + 1
c
2
, c
8
y
4
+ y
3
+ 3y
2
+ 2y + 1
c
3
y
4
+ 9y
3
+ 31y
2
+ 19y + 4
c
7
, c
9
y
4
35
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.395123 + 0.506844I
a = 0
b = 0.395123 + 0.506844I
0.21101 + 1.41510I 1.82674 4.90874I
u = 0.395123 0.506844I
a = 0
b = 0.395123 0.506844I
0.21101 1.41510I 1.82674 + 4.90874I
u = 0.10488 + 1.55249I
a = 0
b = 0.10488 + 1.55249I
6.79074 + 3.16396I 1.82674 2.56480I
u = 0.10488 1.55249I
a = 0
b = 0.10488 1.55249I
6.79074 3.16396I 1.82674 + 2.56480I
36
VII. I
u
7
= h11u
7
+ 19u
6
+ · · · + 2b 28, u
7
+ u
6
+ 4u
5
+ 2u
4
5u
3
3u
2
+
2a + 3u 3, u
8
+ u
7
+ · · · 3u + 2i
(i) Arc colorings
a
8
=
0
u
a
10
=
1
0
a
5
=
1
2
u
7
1
2
u
6
+ ···
3
2
u +
3
2
11
2
u
7
19
2
u
6
+ ···
9
2
u + 14
a
11
=
1
u
2
a
4
=
6u
7
10u
6
+ ··· 7u +
31
2
17
2
u
7
15u
6
+ ···
11
2
u + 22
a
7
=
1
2
u
7
1
2
u
6
+ ···
3
2
u +
3
2
11
2
u
7
19
2
u
6
+ ···
7
2
u + 14
a
12
=
7u
7
+
25
2
u
6
+ ··· + 4u
31
2
1
a
9
=
7u
7
25
2
u
6
+ ··· 4u +
33
2
1
a
3
=
19
2
u
7
17u
6
+ ···
7
2
u +
51
2
29
2
u
7
26u
6
+ ···
13
2
u + 38
a
2
=
19
2
u
7
17u
6
+ ···
7
2
u +
51
2
41
2
u
7
73
2
u
6
+ ··· 10u + 53
a
1
=
8u
7
14u
6
43u
5
49u
4
+ u
3
+ 23u
2
5u + 23
8u
7
14u
6
43u
5
49u
4
+ u
3
+ 23u
2
5u + 22
a
6
=
6u
7
10u
6
+ ··· 6u +
31
2
11
2
u
7
19
2
u
6
+ ···
9
2
u + 14
(ii) Obstruction class = 1
(iii) Cusp Shapes = 52u
7
+ 92u
6
+ 278u
5
+ 318u
4
18u
3
168u
2
+ 30u 146
37
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
11
(u
4
+ u
3
+ 3u
2
+ 2u + 1)
2
c
2
, c
8
(u
4
u
3
+ u
2
+ 1)
2
c
3
(u
4
+ u
3
+ 5u
2
u + 2)
2
c
4
, c
6
, c
10
c
12
u
8
+ u
7
+ 4u
6
+ 2u
5
5u
4
3u
3
+ 3u
2
3u + 2
c
7
, c
9
(u + 1)
8
38
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
11
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
c
2
, c
8
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
c
3
(y
4
+ 9y
3
+ 31y
2
+ 19y + 4)
2
c
4
, c
6
, c
10
c
12
y
8
+ 7y
7
+ 2y
6
32y
5
+ 71y
4
11y
3
29y
2
+ 3y + 4
c
7
, c
9
(y 1)
8
39
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.772314 + 0.004686I
a = 1.294760 0.007855I
b = 0.395123 0.506844I
3.50087 1.41510I 13.8267 + 4.9087I
u = 0.772314 0.004686I
a = 1.294760 + 0.007855I
b = 0.395123 + 0.506844I
3.50087 + 1.41510I 13.8267 4.9087I
u = 1.167440 + 0.511530I
a = 0.718612 0.314870I
b = 0.395123 + 0.506844I
3.50087 + 1.41510I 13.8267 4.9087I
u = 1.167440 0.511530I
a = 0.718612 + 0.314870I
b = 0.395123 0.506844I
3.50087 1.41510I 13.8267 + 4.9087I
u = 0.090777 + 0.644863I
a = 0.21405 1.52058I
b = 0.10488 1.55249I
3.50087 3.16396I 10.17326 + 2.56480I
u = 0.090777 0.644863I
a = 0.21405 + 1.52058I
b = 0.10488 + 1.55249I
3.50087 + 3.16396I 10.17326 2.56480I
u = 0.19565 + 2.19735I
a = 0.040203 0.451513I
b = 0.10488 + 1.55249I
3.50087 + 3.16396I 10.17326 2.56480I
u = 0.19565 2.19735I
a = 0.040203 + 0.451513I
b = 0.10488 1.55249I
3.50087 3.16396I 10.17326 + 2.56480I
40
VIII. I
u
8
= hb, a + 1, u + 1i
(i) Arc colorings
a
8
=
0
1
a
10
=
1
0
a
5
=
1
0
a
11
=
1
1
a
4
=
0
1
a
7
=
1
1
a
12
=
1
1
a
9
=
0
1
a
3
=
0
1
a
2
=
0
1
a
1
=
0
1
a
6
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
41
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
8
, c
11
u
c
4
, c
7
, c
10
u + 1
c
6
, c
9
, c
12
u 1
42
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
8
, c
11
y
c
4
, c
6
, c
7
c
9
, c
10
, c
12
y 1
43
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
3.28987 12.0000
44
IX. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u(u
4
+ u
3
+ 3u
2
+ 2u + 1)
15
(u
10
+ 4u
9
+ ··· 12u + 16)
2
· ((u
17
8u
16
+ ··· 11u + 2)
2
)(u
22
+ 8u
21
+ ··· + 160u + 64)
c
2
, c
8
u(u
4
u
3
+ u
2
+ 1)
14
(u
4
+ u
3
+ u
2
+ 1)
· (u
10
+ 4u
9
+ 10u
8
+ 16u
7
+ 19u
6
+ 15u
5
+ 6u
4
5u
3
11u
2
10u 4)
2
· (u
22
+ 6u
21
+ ··· + 32u + 8)(u
34
+ 8u
32
+ ··· 11u
2
2)
c
3
u(u
4
u
3
+ 5u
2
+ u + 2)(u
4
+ u
3
+ 5u
2
u + 2)
14
· ((u
10
4u
9
+ ··· 66u 52)
2
)(u
22
6u
21
+ ··· 5072u + 3880)
· (u
34
+ 12u
32
+ ··· 99u
2
2)
c
4
, c
10
(u + 1)(u
4
+ u
3
+ 3u
2
+ 2u + 1)
· (u
8
+ u
7
+ 4u
6
+ 2u
5
5u
4
3u
3
+ 3u
2
3u + 2)
· (u
16
u
15
+ ··· 20u + 13)(u
20
u
19
+ ··· 7u + 1)
· (u
22
u
21
+ ··· u + 1)(u
32
+ u
31
+ ··· 1290u + 1501)
· (u
34
9u
32
+ ··· 5u + 1)
c
5
, c
11
u(u
4
+ u
3
+ 3u
2
+ 2u + 1)
3
· (u
10
4u
8
u
7
+ 10u
6
+ 3u
5
12u
4
4u
3
+ 6u
2
+ u 1)
2
· (u
16
3u
15
+ ··· + 198u + 97)(u
16
+ u
15
+ ··· + 2u + 19)
2
· (u
22
u
21
+ ··· 16u + 10)(u
34
+ 3u
32
+ ··· + 31u
2
2)
c
6
, c
12
(u 1)(u
4
+ u
3
+ 3u
2
+ 2u + 1)
· (u
8
+ u
7
+ 4u
6
+ 2u
5
5u
4
3u
3
+ 3u
2
3u + 2)
· (u
16
u
15
+ ··· 20u + 13)(u
20
u
19
+ ··· 7u + 1)
· (u
22
u
21
+ ··· u + 1)(u
32
+ u
31
+ ··· 1290u + 1501)
· (u
34
9u
32
+ ··· + 5u + 1)
c
7
u
4
(u + 1)
9
(u
2
+ u + 1)
8
(u
4
+ u
3
2u + 1)
8
· (u
20
7u
19
+ ··· + 710u 71)(u
22
9u
21
+ ··· 15u + 19)
· (u
34
+ 18u
33
+ ··· + 10u + 1)
c
9
u
4
(u 1)(u + 1)
8
(u
2
+ u + 1)
8
(u
4
+ u
3
2u + 1)
8
· (u
20
7u
19
+ ··· + 710u 71)(u
22
9u
21
+ ··· 15u + 19)
· (u
34
18u
33
+ ··· 10u + 1)
45
X. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y(y
4
+ 5y
3
+ ··· + 2y + 1)
15
(y
10
+ 4y
9
+ ··· 1008y + 256)
2
· ((y
17
+ 10y
16
+ ··· 11y 4)
2
)(y
22
+ 12y
21
+ ··· + 28160y + 4096)
c
2
, c
8
y(y
4
+ y
3
+ 3y
2
+ 2y + 1)
15
(y
10
+ 4y
9
+ ··· 12y + 16)
2
· ((y
17
+ 8y
16
+ ··· 11y 2)
2
)(y
22
+ 8y
21
+ ··· + 160y + 64)
c
3
y(y
4
+ 9y
3
+ ··· + 19y + 4)
15
(y
10
+ 4y
9
+ ··· 14028y + 2704)
2
· (y
17
+ 12y
16
+ ··· 99y 2)
2
· (y
22
+ 16y
21
+ ··· + 18242976y + 15054400)
c
4
, c
6
, c
10
c
12
(y 1)(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
· (y
8
+ 7y
7
+ 2y
6
32y
5
+ 71y
4
11y
3
29y
2
+ 3y + 4)
· (y
16
+ 7y
15
+ ··· 400y + 169)(y
20
+ 3y
19
+ ··· 77y + 1)
· (y
22
+ 21y
21
+ ··· + 35y + 1)
· (y
32
23y
31
+ ··· 13272834y + 2253001)
· (y
34
18y
33
+ ··· 5y + 1)
c
5
, c
11
y(y
4
+ 5y
3
+ ··· + 2y + 1)
3
(y
10
8y
9
+ ··· 13y + 1)
2
· (y
16
13y
15
+ ··· 37264y + 9409)
· ((y
16
y
15
+ ··· 2512y + 361)
2
)(y
17
+ 3y
16
+ ··· + 31y 2)
2
· (y
22
+ y
21
+ ··· + 624y + 100)
c
7
, c
9
y
4
(y 1)
9
(y
2
+ y + 1)
8
(y
4
y
3
+ 6y
2
4y + 1)
8
· (y
20
7y
19
+ ··· 29394y + 5041)(y
22
9y
21
+ ··· 187y + 361)
· (y
34
14y
33
+ ··· 4y + 1)
46