12n
0638
(K12n
0638
)
A knot diagram
1
Linearized knot diagam
3 8 9 11 1 10 2 7 5 7 9 5
Solving Sequence
2,7
8 3
5,9
10 11 1 4 6 12
c
7
c
2
c
8
c
9
c
10
c
1
c
4
c
6
c
12
c
3
, c
5
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
14
3u
13
+ ··· + 2b 2, 7u
14
+ 29u
13
+ ··· + 4a + 24, u
15
+ 5u
14
+ ··· + 18u + 4i
I
u
2
= hu
10
+ u
9
u
8
+ 4u
6
+ 3u
5
2u
4
+ 3u
2
+ b + 2u, u
10
+ 3u
6
+ u
5
+ u
4
u
3
+ 2u
2
+ a + 2u + 1,
u
11
+ u
10
u
9
u
8
+ 4u
7
+ 4u
6
2u
5
3u
4
+ 3u
3
+ 4u
2
1i
I
u
3
= hb + 2, a + 1, u 1i
I
u
4
= ha
3
+ 2a
2
+ 3b + a + 5, a
4
+ a
3
+ 2a
2
+ 4a + 1, u 1i
* 4 irreducible components of dim
C
= 0, with total 31 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−u
14
3u
13
+· · ·+2b2, 7u
14
+29u
13
+· · ·+4a+24, u
15
+5u
14
+· · ·+18u+4i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
3
=
u
u
3
+ u
a
5
=
7
4
u
14
29
4
u
13
+ ···
105
4
u 6
1
2
u
14
+
3
2
u
13
+ ··· +
11
2
u + 1
a
9
=
u
2
+ 1
u
2
a
10
=
1
2
u
14
2u
13
+ ···
9
2
u
1
2
1
2
u
14
+
3
2
u
13
+ ··· + 4u
2
+
1
2
u
a
11
=
u
14
7
2
u
13
+ ··· 5u
1
2
1
2
u
14
+
3
2
u
13
+ ··· + 4u
2
+
1
2
u
a
1
=
u
3
u
5
u
3
+ u
a
4
=
u
7
2u
5
+ 2u
3
2u
u
7
+ u
5
2u
3
+ u
a
6
=
5
4
u
14
+
23
4
u
13
+ ··· +
79
4
u + 6
1
2
u
14
3
2
u
13
+ ···
9
2
u 1
a
12
=
1
2
u
14
2u
13
+ ···
9
2
u
3
2
1
2
u
14
+
3
2
u
13
+ ··· + 3u
2
+
3
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 9u
14
39u
13
62u
12
+ 12u
11
+ 189u
10
+ 271u
9
+ 58u
8
259u
7
277u
6
+ 33u
5
+ 223u
4
+ 70u
3
138u
2
142u 54
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
15
+ 5u
14
+ ··· + 108u + 16
c
2
, c
7
u
15
+ 5u
14
+ ··· + 18u + 4
c
3
u
15
7u
14
+ ··· 7974u + 2196
c
4
, c
6
, c
10
u
15
3u
14
+ ··· + 2u + 1
c
5
, c
9
, c
12
u
15
+ 2u
14
+ ··· 3u 1
c
11
u
15
+ 8u
14
+ ··· + 26u + 2
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
15
+ 11y
14
+ ··· + 4464y 256
c
2
, c
7
y
15
5y
14
+ ··· + 108y 16
c
3
y
15
89y
14
+ ··· + 102923820y 4822416
c
4
, c
6
, c
10
y
15
41y
14
+ ··· + 36y 1
c
5
, c
9
, c
12
y
15
28y
14
+ ··· 11y 1
c
11
y
15
38y
14
+ ··· + 200y 4
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.606388 + 0.721644I
a = 1.39179 + 0.62558I
b = 0.960938 0.688802I
0.178243 0.909766I 10.00645 + 2.94587I
u = 0.606388 0.721644I
a = 1.39179 0.62558I
b = 0.960938 + 0.688802I
0.178243 + 0.909766I 10.00645 2.94587I
u = 1.08047
a = 0.675053
b = 1.51745
5.54081 14.3560
u = 0.746431 + 0.514902I
a = 0.082980 0.242831I
b = 0.397865 0.145660I
1.19505 1.99555I 7.66777 + 5.97030I
u = 0.746431 0.514902I
a = 0.082980 + 0.242831I
b = 0.397865 + 0.145660I
1.19505 + 1.99555I 7.66777 5.97030I
u = 1.021710 + 0.661454I
a = 0.06650 1.96813I
b = 1.33073 + 0.86334I
1.39940 + 6.23344I 10.94430 8.75401I
u = 1.021710 0.661454I
a = 0.06650 + 1.96813I
b = 1.33073 0.86334I
1.39940 6.23344I 10.94430 + 8.75401I
u = 0.518806 + 1.107840I
a = 1.210170 0.046109I
b = 1.78546 + 0.11853I
10.31580 3.71425I 10.43409 + 0.73580I
u = 0.518806 1.107840I
a = 1.210170 + 0.046109I
b = 1.78546 0.11853I
10.31580 + 3.71425I 10.43409 0.73580I
u = 0.931933 + 0.895825I
a = 0.466639 + 0.398594I
b = 0.712541 + 0.015963I
9.82516 + 3.30608I 14.5483 3.5573I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.931933 0.895825I
a = 0.466639 0.398594I
b = 0.712541 0.015963I
9.82516 3.30608I 14.5483 + 3.5573I
u = 1.21080 + 0.76031I
a = 0.31276 + 1.60256I
b = 1.83309 0.17932I
12.5061 + 10.4262I 11.73103 4.47783I
u = 1.21080 0.76031I
a = 0.31276 1.60256I
b = 1.83309 + 0.17932I
12.5061 10.4262I 11.73103 + 4.47783I
u = 1.46326
a = 0.512604
b = 1.84763
18.0985 13.9500
u = 0.457334
a = 0.825053
b = 0.204761
0.594889 17.0300
6
II. I
u
2
= hu
10
+ u
9
u
8
+ 4u
6
+ 3u
5
2u
4
+ 3u
2
+ b + 2u, u
10
+ 3u
6
+ u
5
+
u
4
u
3
+ 2u
2
+ a + 2u + 1, u
11
+ u
10
+ · · · + 4u
2
1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
3
=
u
u
3
+ u
a
5
=
u
10
3u
6
u
5
u
4
+ u
3
2u
2
2u 1
u
10
u
9
+ u
8
4u
6
3u
5
+ 2u
4
3u
2
2u
a
9
=
u
2
+ 1
u
2
a
10
=
u
10
+ 2u
8
5u
6
+ 6u
4
6u
2
u + 4
u
10
+ u
9
u
8
u
7
+ 4u
6
+ 3u
5
2u
4
2u
3
+ 3u
2
+ 2u
a
11
=
2u
10
u
9
+ 3u
8
+ u
7
9u
6
3u
5
+ 8u
4
+ 2u
3
9u
2
3u + 4
u
10
+ u
9
u
8
u
7
+ 4u
6
+ 3u
5
2u
4
2u
3
+ 3u
2
+ 2u
a
1
=
u
3
u
5
u
3
+ u
a
4
=
u
7
2u
5
+ 2u
3
2u
u
7
+ u
5
2u
3
+ u
a
6
=
2u
10
u
9
+ u
8
7u
6
3u
5
+ u
4
+ u
3
5u
2
3u
u
10
u
9
+ u
8
+ u
7
4u
6
4u
5
+ 2u
4
+ 2u
3
3u
2
3u
a
12
=
u
10
+ 2u
8
5u
6
+ 6u
4
+ u
3
5u
2
u + 3
u
10
+ u
9
u
8
u
7
+ 4u
6
+ 4u
5
2u
4
3u
3
+ 2u
2
+ 3u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
10
+ 2u
7
+ 8u
6
2u
5
+ u
3
+ 10u
2
+ u 10
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
11
3u
10
+ ··· + 8u 1
c
2
u
11
u
10
u
9
+ u
8
+ 4u
7
4u
6
2u
5
+ 3u
4
+ 3u
3
4u
2
+ 1
c
3
u
11
u
10
+ 7u
9
+ u
8
2u
7
+ 5u
6
+ 39u
5
31u
4
+ 12u
3
u
2
2u + 1
c
4
, c
10
u
11
+ 2u
10
+ 2u
9
+ 2u
8
u
7
3u
6
u
5
+ 2u
3
+ 3u
2
+ u + 1
c
5
, c
9
u
11
+ u
10
+ 3u
9
+ 2u
8
u
6
3u
5
u
4
+ 2u
3
+ 2u
2
+ 2u + 1
c
6
u
11
2u
10
+ 2u
9
2u
8
u
7
+ 3u
6
u
5
+ 2u
3
3u
2
+ u 1
c
7
u
11
+ u
10
u
9
u
8
+ 4u
7
+ 4u
6
2u
5
3u
4
+ 3u
3
+ 4u
2
1
c
8
u
11
+ 3u
10
+ ··· + 8u + 1
c
11
u
11
11u
10
+ ··· 24u + 9
c
12
u
11
u
10
+ 3u
9
2u
8
+ u
6
3u
5
+ u
4
+ 2u
3
2u
2
+ 2u 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
11
+ 13y
10
+ ··· + 20y 1
c
2
, c
7
y
11
3y
10
+ ··· + 8y 1
c
3
y
11
+ 13y
10
+ ··· + 6y 1
c
4
, c
6
, c
10
y
11
6y
9
+ 2y
8
+ 13y
7
9y
6
15y
5
+ 8y
4
+ 8y
3
5y
2
5y 1
c
5
, c
9
, c
12
y
11
+ 5y
10
+ 5y
9
8y
8
8y
7
+ 15y
6
+ 9y
5
13y
4
2y
3
+ 6y
2
1
c
11
y
11
23y
10
+ ··· 324y 81
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.859595 + 0.621070I
a = 0.264591 0.511619I
b = 1.184910 0.173635I
5.06364 2.43633I 9.98510 + 2.91167I
u = 0.859595 0.621070I
a = 0.264591 + 0.511619I
b = 1.184910 + 0.173635I
5.06364 + 2.43633I 9.98510 2.91167I
u = 0.715758 + 0.795244I
a = 1.83523 0.23082I
b = 1.61321 0.43685I
1.149260 + 0.247570I 13.50982 0.73342I
u = 0.715758 0.795244I
a = 1.83523 + 0.23082I
b = 1.61321 + 0.43685I
1.149260 0.247570I 13.50982 + 0.73342I
u = 0.791184 + 0.262463I
a = 0.50598 + 1.77609I
b = 0.389923 0.338442I
3.12519 + 1.08690I 6.47529 6.28285I
u = 0.791184 0.262463I
a = 0.50598 1.77609I
b = 0.389923 + 0.338442I
3.12519 1.08690I 6.47529 + 6.28285I
u = 1.006190 + 0.705559I
a = 0.60734 2.06814I
b = 1.77582 + 0.58284I
2.06494 + 5.42980I 15.7370 3.3620I
u = 1.006190 0.705559I
a = 0.60734 + 2.06814I
b = 1.77582 0.58284I
2.06494 5.42980I 15.7370 + 3.3620I
u = 0.925242 + 0.874685I
a = 0.038280 + 0.149800I
b = 0.412394 + 0.056790I
10.30640 3.24156I 2.36799 + 1.55443I
u = 0.925242 0.874685I
a = 0.038280 0.149800I
b = 0.412394 0.056790I
10.30640 + 3.24156I 2.36799 1.55443I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.456590
a = 2.32582
b = 1.54682
4.24309 7.32160
11
III. I
u
3
= hb + 2, a + 1, u 1i
(i) Arc colorings
a
2
=
0
1
a
7
=
1
0
a
8
=
1
1
a
3
=
1
0
a
5
=
1
2
a
9
=
0
1
a
10
=
1
1
a
11
=
0
1
a
1
=
1
1
a
4
=
1
1
a
6
=
0
1
a
12
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 24
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
7
, c
9
, c
10
u 1
c
2
, c
3
, c
6
c
8
, c
12
u + 1
c
11
u
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
12
y 1
c
11
y
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 2.00000
6.57974 24.0000
15
IV. I
u
4
= ha
3
+ 2a
2
+ 3b + a + 5, a
4
+ a
3
+ 2a
2
+ 4a + 1, u 1i
(i) Arc colorings
a
2
=
0
1
a
7
=
1
0
a
8
=
1
1
a
3
=
1
0
a
5
=
a
1
3
a
3
2
3
a
2
1
3
a
5
3
a
9
=
0
1
a
10
=
a
2
1
3
a
3
1
3
a
2
+
1
3
a +
2
3
a
11
=
1
3
a
3
2
3
a
2
1
3
a
2
3
1
3
a
3
1
3
a
2
+
1
3
a +
2
3
a
1
=
1
1
a
4
=
1
1
a
6
=
1
3
a
3
+
2
3
a
2
+
7
3
a +
5
3
a
a
12
=
1
3
a
3
+
2
3
a
2
+
1
3
a +
2
3
2
3
a
3
1
3
a
2
2
3
a
4
3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 14
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
(u + 1)
4
c
2
, c
3
, c
7
(u 1)
4
c
4
, c
6
, c
10
u
4
+ u
3
2u 1
c
5
, c
9
, c
12
u
4
u
3
+ 2u
2
4u + 1
c
11
(u
2
u 1)
2
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
(y 1)
4
c
4
, c
6
, c
10
y
4
y
3
+ 2y
2
4y + 1
c
5
, c
9
, c
12
y
4
+ 3y
3
2y
2
12y + 1
c
11
(y
2
3y + 1)
2
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.33107
b = 1.61803
5.59278 14.0000
u = 1.00000
a = 0.30902 + 1.58825I
b = 0.618034
2.30291 14.0000
u = 1.00000
a = 0.30902 1.58825I
b = 0.618034
2.30291 14.0000
u = 1.00000
a = 0.286961
b = 1.61803
5.59278 14.0000
19
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)(u + 1)
4
(u
11
3u
10
+ ··· + 8u 1)(u
15
+ 5u
14
+ ··· + 108u + 16)
c
2
(u 1)
4
(u + 1)
· (u
11
u
10
u
9
+ u
8
+ 4u
7
4u
6
2u
5
+ 3u
4
+ 3u
3
4u
2
+ 1)
· (u
15
+ 5u
14
+ ··· + 18u + 4)
c
3
(u 1)
4
(u + 1)
· (u
11
u
10
+ 7u
9
+ u
8
2u
7
+ 5u
6
+ 39u
5
31u
4
+ 12u
3
u
2
2u + 1)
· (u
15
7u
14
+ ··· 7974u + 2196)
c
4
, c
10
(u 1)(u
4
+ u
3
2u 1)
· (u
11
+ 2u
10
+ 2u
9
+ 2u
8
u
7
3u
6
u
5
+ 2u
3
+ 3u
2
+ u + 1)
· (u
15
3u
14
+ ··· + 2u + 1)
c
5
, c
9
(u 1)(u
4
u
3
+ 2u
2
4u + 1)
· (u
11
+ u
10
+ 3u
9
+ 2u
8
u
6
3u
5
u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
· (u
15
+ 2u
14
+ ··· 3u 1)
c
6
(u + 1)(u
4
+ u
3
2u 1)
· (u
11
2u
10
+ 2u
9
2u
8
u
7
+ 3u
6
u
5
+ 2u
3
3u
2
+ u 1)
· (u
15
3u
14
+ ··· + 2u + 1)
c
7
(u 1)
5
(u
11
+ u
10
u
9
u
8
+ 4u
7
+ 4u
6
2u
5
3u
4
+ 3u
3
+ 4u
2
1)
· (u
15
+ 5u
14
+ ··· + 18u + 4)
c
8
((u + 1)
5
)(u
11
+ 3u
10
+ ··· + 8u + 1)(u
15
+ 5u
14
+ ··· + 108u + 16)
c
11
u(u
2
u 1)
2
(u
11
11u
10
+ ··· 24u + 9)
· (u
15
+ 8u
14
+ ··· + 26u + 2)
c
12
(u + 1)(u
4
u
3
+ 2u
2
4u + 1)
· (u
11
u
10
+ 3u
9
2u
8
+ u
6
3u
5
+ u
4
+ 2u
3
2u
2
+ 2u 1)
· (u
15
+ 2u
14
+ ··· 3u 1)
20
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
8
((y 1)
5
)(y
11
+ 13y
10
+ ··· + 20y 1)
· (y
15
+ 11y
14
+ ··· + 4464y 256)
c
2
, c
7
((y 1)
5
)(y
11
3y
10
+ ··· + 8y 1)(y
15
5y
14
+ ··· + 108y 16)
c
3
((y 1)
5
)(y
11
+ 13y
10
+ ··· + 6y 1)
· (y
15
89y
14
+ ··· + 102923820y 4822416)
c
4
, c
6
, c
10
(y 1)(y
4
y
3
+ 2y
2
4y + 1)
· (y
11
6y
9
+ 2y
8
+ 13y
7
9y
6
15y
5
+ 8y
4
+ 8y
3
5y
2
5y 1)
· (y
15
41y
14
+ ··· + 36y 1)
c
5
, c
9
, c
12
(y 1)(y
4
+ 3y
3
2y
2
12y + 1)
· (y
11
+ 5y
10
+ 5y
9
8y
8
8y
7
+ 15y
6
+ 9y
5
13y
4
2y
3
+ 6y
2
1)
· (y
15
28y
14
+ ··· 11y 1)
c
11
y(y
2
3y + 1)
2
(y
11
23y
10
+ ··· 324y 81)
· (y
15
38y
14
+ ··· + 200y 4)
21