12n
0639
(K12n
0639
)
A knot diagram
1
Linearized knot diagam
3 8 12 8 11 10 2 4 3 5 6 9
Solving Sequence
3,12 4,8
5 9 10 2 1 7 6 11
c
3
c
4
c
8
c
9
c
2
c
1
c
7
c
6
c
11
c
5
, c
10
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h11u
19
95u
18
+ ··· + 2b 86, 49u
19
+ 435u
18
+ ··· + 4a + 508, u
20
9u
19
+ ··· 22u + 4i
I
u
2
= hu
14
+ 4u
13
+ 10u
12
+ 15u
11
+ 15u
10
+ 6u
9
6u
8
16u
7
16u
6
13u
5
6u
4
3u
3
+ b + u + 2,
4u
14
18u
13
+ ··· + a + 5,
u
15
+ 6u
14
+ 19u
13
+ 38u
12
+ 50u
11
+ 37u
10
4u
9
52u
8
74u
7
57u
6
18u
5
+ 12u
4
+ 18u
3
+ 8u
2
1i
I
u
3
= h−a
3
2a
2
u + 3u
2
a a
2
+ 4au + u
2
+ b + 3a + u + 3,
a
3
u
2
+ a
4
+ 2a
3
u 5a
2
u
2
+ a
3
4a
2
u 3u
2
a a
2
5au 2u
2
4a 1, u
3
+ u
2
1i
* 3 irreducible components of dim
C
= 0, with total 47 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h11u
19
95u
18
+ · · · + 2b 86, 49u
19
+ 435u
18
+ · · · + 4a +
508, u
20
9u
19
+ · · · 22u + 4i
(i) Arc colorings
a
3
=
1
0
a
12
=
0
u
a
4
=
1
u
2
a
8
=
49
4
u
19
435
4
u
18
+ ··· +
1743
4
u 127
11
2
u
19
+
95
2
u
18
+ ···
317
2
u + 43
a
5
=
1
2
u
19
+ 4u
18
+ ···
27
2
u +
7
2
1
2
u
19
+
7
2
u
18
+ ··· + 6u
2
1
2
u
a
9
=
43
4
u
19
365
4
u
18
+ ··· +
1173
4
u 78
1
2
u
19
3
2
u
18
+ ···
129
2
u + 27
a
10
=
41
4
u
19
359
4
u
18
+ ··· +
1431
4
u 105
1
2
u
19
3
2
u
18
+ ···
129
2
u + 27
a
2
=
1
2
u
18
7
2
u
17
+ ··· 5u +
3
2
1
2
u
19
9
2
u
18
+ ··· +
21
2
u 2
a
1
=
1
2
u
19
4u
18
+ ··· +
11
2
u
1
2
1
2
u
19
9
2
u
18
+ ··· +
21
2
u 2
a
7
=
12u
19
209
2
u
18
+ ··· + 404u
237
2
13
2
u
19
+
107
2
u
18
+ ···
345
2
u + 48
a
6
=
169
4
u
19
1407
4
u
18
+ ··· +
4055
4
u 251
63
2
u
19
+
521
2
u
18
+ ···
1441
2
u + 173
a
11
=
55
2
u
19
+ 227u
18
+ ···
1215
2
u +
285
2
57
2
u
19
469
2
u
18
+ ··· +
1243
2
u 146
(ii) Obstruction class = 1
(iii) Cusp Shapes = 90u
19
751u
18
+ 3199u
17
8714u
16
+ 17011u
15
25494u
14
+
31435u
13
32365u
12
+ 24669u
11
4672u
10
23026u
9
+ 47119u
8
58278u
7
+ 55306u
6
40524u
5
+ 20676u
4
5078u
3
2030u
2
+ 2210u 566
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
20
+ 35u
19
+ ··· 6u + 1
c
2
, c
7
, c
12
u
20
+ u
19
+ ··· 2u 1
c
3
u
20
9u
19
+ ··· 22u + 4
c
4
, c
8
u
20
+ 15u
18
+ ··· 3u 1
c
5
, c
10
, c
11
u
20
7u
19
+ ··· 16u 8
c
6
u
20
+ 21u
19
+ ··· + 23824u + 2664
c
9
u
20
24u
18
+ ··· 197u 57
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
20
123y
19
+ ··· 118y + 1
c
2
, c
7
, c
12
y
20
35y
19
+ ··· + 6y + 1
c
3
y
20
+ y
19
+ ··· 172y + 16
c
4
, c
8
y
20
+ 30y
19
+ ··· 41y + 1
c
5
, c
10
, c
11
y
20
19y
19
+ ··· 352y + 64
c
6
y
20
7y
19
+ ··· 72537184y + 7096896
c
9
y
20
48y
19
+ ··· + 66527y + 3249
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.263775 + 0.933613I
a = 0.063867 + 0.469394I
b = 0.635043 0.343749I
1.90324 + 1.62770I 2.35623 4.39456I
u = 0.263775 0.933613I
a = 0.063867 0.469394I
b = 0.635043 + 0.343749I
1.90324 1.62770I 2.35623 + 4.39456I
u = 1.08046
a = 0.288950
b = 0.649514
5.71917 17.5810
u = 0.288783 + 0.801332I
a = 0.234474 0.843337I
b = 0.484200 + 0.635373I
2.01141 1.38113I 7.57284 0.08377I
u = 0.288783 0.801332I
a = 0.234474 + 0.843337I
b = 0.484200 0.635373I
2.01141 + 1.38113I 7.57284 + 0.08377I
u = 0.626429 + 1.085280I
a = 0.082861 0.296469I
b = 0.711687 + 0.249730I
2.18377 + 5.21287I 7.17987 5.41855I
u = 0.626429 1.085280I
a = 0.082861 + 0.296469I
b = 0.711687 0.249730I
2.18377 5.21287I 7.17987 + 5.41855I
u = 0.727091 + 0.098566I
a = 0.27452 2.08093I
b = 0.036016 + 0.445425I
6.93044 4.62901I 12.95845 0.90844I
u = 0.727091 0.098566I
a = 0.27452 + 2.08093I
b = 0.036016 0.445425I
6.93044 + 4.62901I 12.95845 + 0.90844I
u = 0.622736 + 0.087717I
a = 0.13935 + 1.89543I
b = 0.007001 0.462890I
1.13986 1.75347I 8.00254 + 2.62344I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.622736 0.087717I
a = 0.13935 1.89543I
b = 0.007001 + 0.462890I
1.13986 + 1.75347I 8.00254 2.62344I
u = 1.15558 + 1.02594I
a = 0.454735 + 1.318780I
b = 2.17085 0.53930I
17.3877 12.0858I 13.7130 + 4.9422I
u = 1.15558 1.02594I
a = 0.454735 1.318780I
b = 2.17085 + 0.53930I
17.3877 + 12.0858I 13.7130 4.9422I
u = 1.04701 + 1.18287I
a = 0.989116 0.564620I
b = 2.06593 0.51777I
17.9143 + 3.9437I 13.79737 1.18244I
u = 1.04701 1.18287I
a = 0.989116 + 0.564620I
b = 2.06593 + 0.51777I
17.9143 3.9437I 13.79737 + 1.18244I
u = 0.408607
a = 0.763027
b = 0.439173
0.693185 14.4620
u = 1.16573 + 1.09145I
a = 0.587075 1.041030I
b = 2.09877 + 0.18587I
14.6724 7.3263I 11.70204 + 4.29722I
u = 1.16573 1.09145I
a = 0.587075 + 1.041030I
b = 2.09877 0.18587I
14.6724 + 7.3263I 11.70204 4.29722I
u = 1.12782 + 1.15737I
a = 0.757846 + 0.799117I
b = 2.06719 + 0.14611I
14.4635 1.0817I 11.69610 + 0.I
u = 1.12782 1.15737I
a = 0.757846 0.799117I
b = 2.06719 0.14611I
14.4635 + 1.0817I 11.69610 + 0.I
6
II.
I
u
2
= hu
14
+4u
13
+· · ·+b+2, 4u
14
18u
13
+· · ·+a+5, u
15
+6u
14
+· · ·+8u
2
1i
(i) Arc colorings
a
3
=
1
0
a
12
=
0
u
a
4
=
1
u
2
a
8
=
4u
14
+ 18u
13
+ ··· 11u 5
u
14
4u
13
+ ··· u 2
a
5
=
u
12
5u
11
+ ··· 10u 7
u
14
6u
13
+ ··· 17u
2
8u
a
9
=
2u
14
13u
13
+ ··· 16u 1
4u
14
22u
13
+ ··· 7u + 3
a
10
=
2u
14
+ 9u
13
+ ··· 9u 4
4u
14
22u
13
+ ··· 7u + 3
a
2
=
u
13
6u
12
+ ··· 18u 7
u
14
6u
13
+ ··· 8u 1
a
1
=
u
14
7u
13
+ ··· 26u 8
u
14
6u
13
+ ··· 8u 1
a
7
=
4u
14
+ 22u
13
+ ··· + 29u + 9
2u
14
+ 13u
13
+ ··· + 16u + 1
a
6
=
2u
14
11u
13
+ ··· + 4u + 7
4u
14
+ 24u
13
+ ··· + 12u 6
a
11
=
5u
14
+ 29u
13
+ ··· + 22u 2
4u
14
23u
13
+ ··· 4u + 9
(ii) Obstruction class = 1
(iii) Cusp Shapes = 15u
14
+ 84u
13
+ 246u
12
+ 446u
11
+ 504u
10
+ 245u
9
262u
8
701u
7
742u
6
398u
5
+ 24u
4
+ 221u
3
+ 159u
2
+ 17u 32
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
15
15u
14
+ ··· + 9u 1
c
2
u
15
+ u
14
+ ··· u 1
c
3
u
15
+ 6u
14
+ ··· + 8u
2
1
c
4
u
15
+ 3u
13
+ ··· 4u
2
1
c
5
u
15
8u
13
+ ··· 12u
3
1
c
6
u
15
+ 8u
12
+ ··· + 3u
2
1
c
7
, c
12
u
15
u
14
+ ··· u + 1
c
8
u
15
+ 3u
13
+ ··· + 4u
2
+ 1
c
9
u
15
8u
13
+ ··· + 2u
2
+ 1
c
10
, c
11
u
15
8u
13
+ ··· 12u
3
+ 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
15
31y
14
+ ··· 11y 1
c
2
, c
7
, c
12
y
15
15y
14
+ ··· + 9y 1
c
3
y
15
+ 2y
14
+ ··· + 16y 1
c
4
, c
8
y
15
+ 6y
14
+ ··· 8y 1
c
5
, c
10
, c
11
y
15
16y
14
+ ··· + 12y
2
1
c
6
y
15
22y
13
+ ··· + 6y 1
c
9
y
15
16y
14
+ ··· 4y 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.02838
a = 0.673279
b = 1.40442
8.97607 19.1120
u = 0.865049 + 0.608135I
a = 0.280256 + 1.131020I
b = 0.638534 0.425883I
1.66725 + 3.23030I 7.54630 5.89815I
u = 0.865049 0.608135I
a = 0.280256 1.131020I
b = 0.638534 + 0.425883I
1.66725 3.23030I 7.54630 + 5.89815I
u = 0.034033 + 1.074520I
a = 0.708776 0.233805I
b = 1.075770 0.432119I
3.77019 2.56256I 12.71337 + 2.06324I
u = 0.034033 1.074520I
a = 0.708776 + 0.233805I
b = 1.075770 + 0.432119I
3.77019 + 2.56256I 12.71337 2.06324I
u = 0.764295 + 0.414957I
a = 0.38774 1.74222I
b = 0.518757 + 0.528802I
6.94753 + 5.39923I 13.2804 8.9655I
u = 0.764295 0.414957I
a = 0.38774 + 1.74222I
b = 0.518757 0.528802I
6.94753 5.39923I 13.2804 + 8.9655I
u = 0.410448 + 1.166870I
a = 0.612112 0.171673I
b = 0.945688 + 0.403215I
0.60597 + 1.58539I 9.91315 2.10632I
u = 0.410448 1.166870I
a = 0.612112 + 0.171673I
b = 0.945688 0.403215I
0.60597 1.58539I 9.91315 + 2.10632I
u = 1.122950 + 0.658583I
a = 0.067419 0.819750I
b = 0.652697 + 0.297689I
5.15231 + 1.54512I 15.9184 2.4740I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.122950 0.658583I
a = 0.067419 + 0.819750I
b = 0.652697 0.297689I
5.15231 1.54512I 15.9184 + 2.4740I
u = 0.625489
a = 1.58555
b = 1.61206
6.43860 4.48120
u = 0.76860 + 1.27462I
a = 0.362430 + 0.320539I
b = 0.872760 0.329613I
2.95721 + 5.51163I 16.1590 8.3531I
u = 0.76860 1.27462I
a = 0.362430 0.320539I
b = 0.872760 + 0.329613I
2.95721 5.51163I 16.1590 + 8.3531I
u = 0.276879
a = 6.07420
b = 2.14748
13.8955 11.3460
11
III. I
u
3
= h3u
2
a + u
2
+ · · · + 3a + 3, a
3
u
2
5a
2
u
2
+ · · · 4a 1, u
3
+ u
2
1i
(i) Arc colorings
a
3
=
1
0
a
12
=
0
u
a
4
=
1
u
2
a
8
=
a
a
3
+ 2a
2
u 3u
2
a + a
2
4au u
2
3a u 3
a
5
=
a
3
u
2
a
2
u
2
2u
2
a + 2a
2
4au 2u
2
a
2a
3
u
2
+ 3a
2
u
2
+ 4u
2
a 4a
2
+ 8au + 4u
2
+ 2a 2u
a
9
=
a
3
+ 2a
2
u 4u
2
a + a
2
4au u
2
2a u 3
a
3
u
2
a
2
u
2
+ a
3
+ 2a
2
u 6u
2
a + 3a
2
8au 4u
2
3a 2u 3
a
10
=
a
3
u
2
+ a
2
u
2
+ 2u
2
a 2a
2
+ 4au + 3u
2
+ a + u
a
3
u
2
a
2
u
2
+ a
3
+ 2a
2
u 6u
2
a + 3a
2
8au 4u
2
3a 2u 3
a
2
=
a
3
u
2
2a
2
u
2
2u
2
a + 2a
2
4au 2u
2
a
a
3
u
2
+ a
3
u + 3a
2
u
2
a
3
2a
2
u + 5u
2
a 2a
2
+ 6au 4u + 2
a
1
=
a
3
u + a
2
u
2
a
3
2a
2
u + 3u
2
a + 2au 2u
2
a 4u + 2
a
3
u
2
+ a
3
u + 3a
2
u
2
a
3
2a
2
u + 5u
2
a 2a
2
+ 6au 4u + 2
a
7
=
3a
3
u
2
3a
2
u
2
6u
2
a + 6a
2
12au 8u
2
3a 2u
5a
3
u
2
+ 4a
2
u
2
+ ··· + 10a + 4
a
6
=
a
3
u
2
a
2
u
2
2u
2
a + 2a
2
4au 3u
2
a u
2a
3
u
2
a
3
u a
2
u + 5u
2
a 4a
2
+ 10au + 6u
2
+ 5a + 5u + 1
a
11
=
a
3
u
2
a
2
u
2
2u
2
a + 2a
2
4au 2u
2
a
3a
3
u
2
+ 2a
2
u
2
+ ··· + 4a 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u 18
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
12
+ 21u
11
+ ··· + 54160u + 10201
c
2
, c
7
, c
12
u
12
u
11
+ ··· 78u + 101
c
3
(u
3
+ u
2
1)
4
c
4
, c
8
u
12
3u
11
+ ··· + 110u 19
c
5
, c
10
, c
11
(u
2
+ u 1)
6
c
6
(u
2
3u + 1)
6
c
9
u
12
u
11
+ ··· + 170u + 211
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
12
37y
11
+ ··· 490778160y + 104060401
c
2
, c
7
, c
12
y
12
21y
11
+ ··· 54160y + 10201
c
3
(y
3
y
2
+ 2y 1)
4
c
4
, c
8
y
12
+ 7y
11
+ ··· 7160y + 361
c
5
, c
10
, c
11
(y
2
3y + 1)
6
c
6
(y
2
7y + 1)
6
c
9
y
12
29y
11
+ ··· 124272y + 44521
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.290927 0.889122I
b = 0.901307 + 0.772844I
2.89763 + 2.82812I 14.4902 2.9794I
u = 0.877439 + 0.744862I
a = 0.624540 + 1.001960I
b = 0.768380 + 0.035014I
2.89763 + 2.82812I 14.4902 2.9794I
u = 0.877439 + 0.744862I
a = 0.550642 + 1.189890I
b = 1.58009 1.38831I
10.79330 + 2.82812I 14.4902 2.9794I
u = 0.877439 + 0.744862I
a = 1.42405 1.48532I
b = 1.23208 0.72669I
10.79330 + 2.82812I 14.4902 2.9794I
u = 0.877439 0.744862I
a = 0.290927 + 0.889122I
b = 0.901307 0.772844I
2.89763 2.82812I 14.4902 + 2.9794I
u = 0.877439 0.744862I
a = 0.624540 1.001960I
b = 0.768380 0.035014I
2.89763 2.82812I 14.4902 + 2.9794I
u = 0.877439 0.744862I
a = 0.550642 1.189890I
b = 1.58009 + 1.38831I
10.79330 2.82812I 14.4902 + 2.9794I
u = 0.877439 0.744862I
a = 1.42405 + 1.48532I
b = 1.23208 + 0.72669I
10.79330 2.82812I 14.4902 + 2.9794I
u = 0.754878
a = 0.777477
b = 2.73154
14.9309 21.0200
u = 0.754878
a = 0.297371
b = 1.83069
7.03522 21.0200
15
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.754878
a = 2.20067
b = 1.47851
7.03522 21.0200
u = 0.754878
a = 4.20541
b = 1.80951
14.9309 21.0200
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
12
+ 21u
11
+ ··· + 54160u + 10201)(u
15
15u
14
+ ··· + 9u 1)
· (u
20
+ 35u
19
+ ··· 6u + 1)
c
2
(u
12
u
11
+ ··· 78u + 101)(u
15
+ u
14
+ ··· u 1)
· (u
20
+ u
19
+ ··· 2u 1)
c
3
((u
3
+ u
2
1)
4
)(u
15
+ 6u
14
+ ··· + 8u
2
1)(u
20
9u
19
+ ··· 22u + 4)
c
4
(u
12
3u
11
+ ··· + 110u 19)(u
15
+ 3u
13
+ ··· 4u
2
1)
· (u
20
+ 15u
18
+ ··· 3u 1)
c
5
((u
2
+ u 1)
6
)(u
15
8u
13
+ ··· 12u
3
1)(u
20
7u
19
+ ··· 16u 8)
c
6
((u
2
3u + 1)
6
)(u
15
+ 8u
12
+ ··· + 3u
2
1)
· (u
20
+ 21u
19
+ ··· + 23824u + 2664)
c
7
, c
12
(u
12
u
11
+ ··· 78u + 101)(u
15
u
14
+ ··· u + 1)
· (u
20
+ u
19
+ ··· 2u 1)
c
8
(u
12
3u
11
+ ··· + 110u 19)(u
15
+ 3u
13
+ ··· + 4u
2
+ 1)
· (u
20
+ 15u
18
+ ··· 3u 1)
c
9
(u
12
u
11
+ ··· + 170u + 211)(u
15
8u
13
+ ··· + 2u
2
+ 1)
· (u
20
24u
18
+ ··· 197u 57)
c
10
, c
11
((u
2
+ u 1)
6
)(u
15
8u
13
+ ··· 12u
3
+ 1)(u
20
7u
19
+ ··· 16u 8)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
12
37y
11
+ ··· 490778160y + 104060401)
· (y
15
31y
14
+ ··· 11y 1)(y
20
123y
19
+ ··· 118y + 1)
c
2
, c
7
, c
12
(y
12
21y
11
+ ··· 54160y + 10201)(y
15
15y
14
+ ··· + 9y 1)
· (y
20
35y
19
+ ··· + 6y + 1)
c
3
((y
3
y
2
+ 2y 1)
4
)(y
15
+ 2y
14
+ ··· + 16y 1)
· (y
20
+ y
19
+ ··· 172y + 16)
c
4
, c
8
(y
12
+ 7y
11
+ ··· 7160y + 361)(y
15
+ 6y
14
+ ··· 8y 1)
· (y
20
+ 30y
19
+ ··· 41y + 1)
c
5
, c
10
, c
11
((y
2
3y + 1)
6
)(y
15
16y
14
+ ··· + 12y
2
1)
· (y
20
19y
19
+ ··· 352y + 64)
c
6
((y
2
7y + 1)
6
)(y
15
22y
13
+ ··· + 6y 1)
· (y
20
7y
19
+ ··· 72537184y + 7096896)
c
9
(y
12
29y
11
+ ··· 124272y + 44521)(y
15
16y
14
+ ··· 4y 1)
· (y
20
48y
19
+ ··· + 66527y + 3249)
18