12n
0640
(K12n
0640
)
A knot diagram
1
Linearized knot diagam
3 8 12 9 11 10 2 5 3 5 6 9
Solving Sequence
5,10
11 6 7
3,12
9 4 8 2 1
c
10
c
5
c
6
c
11
c
9
c
4
c
8
c
2
c
1
c
3
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h9.89972 × 10
17
u
23
1.91877 × 10
15
u
22
+ ··· + 4.06813 × 10
18
b 2.49679 × 10
18
,
8.63753 × 10
17
u
23
1.70899 × 10
18
u
22
+ ··· + 4.06813 × 10
18
a 1.68305 × 10
19
, u
24
10u
22
+ ··· + 6u + 1i
I
u
2
= hu
11
7u
9
+ 17u
7
+ u
6
15u
5
3u
4
+ 2u
2
+ b + 3u,
u
9
u
8
6u
7
+ 6u
6
+ 11u
5
11u
4
5u
3
+ 6u
2
+ a 3u + 1,
u
12
8u
10
+ 24u
8
+ u
7
32u
6
4u
5
+ 15u
4
+ 5u
3
+ 2u
2
2u 1i
I
u
3
= hb, a 1, u 1i
* 3 irreducible components of dim
C
= 0, with total 37 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h9.90×10
17
u
23
1.92×10
15
u
22
+· · ·+4.07×10
18
b2.50×10
18
, 8.64×10
17
u
23
1.71 × 10
18
u
22
+ · · · + 4.07 × 10
18
a 1.68 × 10
19
, u
24
10u
22
+ · · · + 6u + 1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
6
=
u
u
3
+ u
a
7
=
u
3
2u
u
3
+ u
a
3
=
0.212322u
23
+ 0.420093u
22
+ ··· + 3.09567u + 4.13716
0.243348u
23
+ 0.000471658u
22
+ ··· + 1.81524u + 0.613744
a
12
=
u
2
+ 1
u
4
+ 2u
2
a
9
=
1.25860u
23
+ 0.336558u
22
+ ··· 22.2342u 4.64549
0.0840693u
23
+ 0.188815u
22
+ ··· 7.10991u 1.40341
a
4
=
0.483379u
23
+ 0.505798u
22
+ ··· 2.99675u + 2.78091
0.208694u
23
0.00110386u
22
+ ··· + 1.55323u + 0.479053
a
8
=
1.25860u
23
+ 0.336558u
22
+ ··· 22.2342u 4.64549
0.226293u
23
+ 0.0998004u
22
+ ··· 6.34916u 1.06686
a
2
=
1.51744u
23
+ 0.547755u
22
+ ··· 19.4211u 3.44143
0.320558u
23
+ 0.0501945u
22
+ ··· 5.21590u 0.630497
a
1
=
1.40524u
23
0.275084u
22
+ ··· + 14.6942u + 2.32021
0.344813u
23
0.0300623u
22
+ ··· 3.26431u 0.145094
(ii) Obstruction class = 1
(iii) Cusp Shapes =
18808788651478118843
4068132824722451189
u
23
+
899618609945270896
4068132824722451189
u
22
+ ···
136381012325864299426
4068132824722451189
u
118763470922061227713
4068132824722451189
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
24
+ 4u
23
+ ··· + 1789u + 1
c
2
, c
7
u
24
+ 2u
23
+ ··· + 47u + 1
c
3
u
24
3u
23
+ ··· + 14u + 1
c
4
, c
8
u
24
+ 3u
23
+ ··· + 80u + 19
c
5
, c
10
, c
11
u
24
10u
22
+ ··· + 6u + 1
c
6
u
24
+ 3u
23
+ ··· + 696u + 37
c
9
u
24
u
23
+ ··· + 40u 8
c
12
u
24
+ 2u
23
+ ··· + 5u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
24
+ 44y
23
+ ··· 3160089y + 1
c
2
, c
7
y
24
4y
23
+ ··· 1789y + 1
c
3
y
24
+ 13y
23
+ ··· 214y + 1
c
4
, c
8
y
24
+ 29y
23
+ ··· 5754y + 361
c
5
, c
10
, c
11
y
24
20y
23
+ ··· 26y + 1
c
6
y
24
+ 47y
23
+ ··· 161850y + 1369
c
9
y
24
+ 23y
23
+ ··· 4064y + 64
c
12
y
24
60y
23
+ ··· 93y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.797828 + 0.678753I
a = 1.02319 + 1.10302I
b = 0.55673 1.65487I
3.88067 2.62654I 11.07995 + 2.70331I
u = 0.797828 0.678753I
a = 1.02319 1.10302I
b = 0.55673 + 1.65487I
3.88067 + 2.62654I 11.07995 2.70331I
u = 1.05078
a = 0.906274
b = 0.133759
4.93398 18.0800
u = 1.21774
a = 1.31377
b = 1.26448
6.34892 11.4760
u = 1.117180 + 0.558107I
a = 0.264601 + 0.177693I
b = 0.642330 1.001630I
0.11807 + 2.01122I 11.63298 1.47216I
u = 1.117180 0.558107I
a = 0.264601 0.177693I
b = 0.642330 + 1.001630I
0.11807 2.01122I 11.63298 + 1.47216I
u = 1.282720 + 0.266061I
a = 0.417258 + 1.231710I
b = 0.313111 0.558407I
2.36903 5.36546I 17.8756 + 8.3270I
u = 1.282720 0.266061I
a = 0.417258 1.231710I
b = 0.313111 + 0.558407I
2.36903 + 5.36546I 17.8756 8.3270I
u = 0.123057 + 1.316600I
a = 0.002520 1.240400I
b = 0.32423 + 2.21788I
10.67480 + 4.86745I 9.82219 2.45720I
u = 0.123057 1.316600I
a = 0.002520 + 1.240400I
b = 0.32423 2.21788I
10.67480 4.86745I 9.82219 + 2.45720I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.315130 + 0.199500I
a = 0.931929 + 0.744429I
b = 0.399732 1.228200I
2.04826 + 3.83523I 16.1350 2.1387I
u = 1.315130 0.199500I
a = 0.931929 0.744429I
b = 0.399732 + 1.228200I
2.04826 3.83523I 16.1350 + 2.1387I
u = 0.410599 + 0.509120I
a = 0.56444 + 1.46880I
b = 0.821859 + 0.235411I
2.03875 + 2.53994I 11.82047 4.16914I
u = 0.410599 0.509120I
a = 0.56444 1.46880I
b = 0.821859 0.235411I
2.03875 2.53994I 11.82047 + 4.16914I
u = 1.49784
a = 0.0823949
b = 1.05480
11.6286 23.4910
u = 0.394751
a = 1.18127
b = 1.60965
7.19054 5.70560
u = 1.41645 + 0.78202I
a = 0.817155 0.477348I
b = 0.71160 + 2.00454I
6.79929 + 2.45061I 11.06872 1.28046I
u = 1.41645 0.78202I
a = 0.817155 + 0.477348I
b = 0.71160 2.00454I
6.79929 2.45061I 11.06872 + 1.28046I
u = 1.50198 + 0.60802I
a = 0.868783 0.609431I
b = 1.06909 + 1.77146I
5.60719 11.65040I 12.86830 + 5.47222I
u = 1.50198 0.60802I
a = 0.868783 + 0.609431I
b = 1.06909 1.77146I
5.60719 + 11.65040I 12.86830 5.47222I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.313467
a = 0.425309
b = 0.324845
0.515739 19.2450
u = 0.232568 + 0.185578I
a = 2.34163 + 3.73562I
b = 0.349022 + 0.617701I
2.00166 + 2.59049I 13.9321 5.9466I
u = 0.232568 0.185578I
a = 2.34163 3.73562I
b = 0.349022 0.617701I
2.00166 2.59049I 13.9321 + 5.9466I
u = 1.78276
a = 0.490994
b = 0.811626
16.2087 2.53170
7
II.
I
u
2
= hu
11
7u
9
+ · · · + b + 3u, u
9
u
8
+ · · · + a + 1, u
12
8u
10
+ · · · 2u 1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
6
=
u
u
3
+ u
a
7
=
u
3
2u
u
3
+ u
a
3
=
u
9
+ u
8
+ 6u
7
6u
6
11u
5
+ 11u
4
+ 5u
3
6u
2
+ 3u 1
u
11
+ 7u
9
17u
7
u
6
+ 15u
5
+ 3u
4
2u
2
3u
a
12
=
u
2
+ 1
u
4
+ 2u
2
a
9
=
u
11
+ u
10
+ ··· + u + 3
u
10
6u
8
+ 11u
6
+ u
5
4u
4
2u
3
5u
2
a
4
=
u
11
8u
9
+ u
8
+ 24u
7
5u
6
31u
5
+ 8u
4
+ 12u
3
3u
2
+ 4u 2
u
11
+ 7u
9
17u
7
u
6
+ 15u
5
+ 3u
4
2u
2
2u
a
8
=
u
11
+ u
10
+ ··· + u + 3
u
6
+ 4u
4
4u
2
u 1
a
2
=
u
9
+ u
8
+ 6u
7
6u
6
11u
5
+ 11u
4
+ 5u
3
5u
2
+ 3u 3
u
10
7u
8
+ 17u
6
+ u
5
16u
4
3u
3
+ 2u
2
+ 2u + 2
a
1
=
u
11
8u
9
+ u
8
+ 24u
7
5u
6
32u
5
+ 8u
4
+ 16u
3
3u
2
3
u
11
+ 2u
10
+ ··· + 7u + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 6u
11
+ 4u
10
+ 43u
9
25u
8
108u
7
+ 42u
6
+ 108u
5
+ u
4
21u
3
40u
2
14u 8
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
12
12u
11
+ ··· 15u + 1
c
2
u
12
6u
10
+ u
9
+ 15u
8
3u
7
21u
6
+ 4u
5
+ 17u
4
4u
3
7u
2
+ u + 1
c
3
u
12
+ 3u
11
+ u
10
5u
9
8u
8
5u
7
+ 2u
6
+ 5u
5
+ 5u
4
+ 3u
3
1
c
4
u
12
+ u
11
u
10
3u
8
2u
7
u
6
+ u
5
+ 3u
4
+ u
3
+ 2u
2
1
c
5
u
12
8u
10
+ 24u
8
u
7
32u
6
+ 4u
5
+ 15u
4
5u
3
+ 2u
2
+ 2u 1
c
6
u
12
8u
10
+ ··· + 2u 1
c
7
u
12
6u
10
u
9
+ 15u
8
+ 3u
7
21u
6
4u
5
+ 17u
4
+ 4u
3
7u
2
u + 1
c
8
u
12
u
11
u
10
3u
8
+ 2u
7
u
6
u
5
+ 3u
4
u
3
+ 2u
2
1
c
9
u
12
2u
10
u
9
3u
8
u
7
+ u
6
+ 2u
5
+ 3u
4
+ u
2
u 1
c
10
, c
11
u
12
8u
10
+ 24u
8
+ u
7
32u
6
4u
5
+ 15u
4
+ 5u
3
+ 2u
2
2u 1
c
12
u
12
4u
11
+ ··· + 7u + 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
12
12y
11
+ ··· 43y + 1
c
2
, c
7
y
12
12y
11
+ ··· 15y + 1
c
3
y
12
7y
11
+ ··· 10y
2
+ 1
c
4
, c
8
y
12
3y
11
+ ··· 4y + 1
c
5
, c
10
, c
11
y
12
16y
11
+ ··· 8y + 1
c
6
y
12
16y
11
+ ··· 20y + 1
c
9
y
12
4y
11
+ ··· 3y + 1
c
12
y
12
24y
11
+ ··· + 17y + 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.17998
a = 0.800947
b = 1.82750
9.65747 15.7210
u = 1.23606
a = 1.56622
b = 1.10566
6.93408 26.3380
u = 1.324120 + 0.237549I
a = 0.849347 + 0.965329I
b = 0.107633 0.994842I
1.41781 + 4.88882I 10.78753 6.22489I
u = 1.324120 0.237549I
a = 0.849347 0.965329I
b = 0.107633 + 0.994842I
1.41781 4.88882I 10.78753 + 6.22489I
u = 0.579754
a = 0.128754
b = 1.45303
7.57612 27.2480
u = 0.136756 + 0.512426I
a = 1.53089 + 2.63864I
b = 0.199486 0.931452I
2.56609 2.20336I 4.12994 + 0.41603I
u = 0.136756 0.512426I
a = 1.53089 2.63864I
b = 0.199486 + 0.931452I
2.56609 + 2.20336I 4.12994 0.41603I
u = 1.46831 + 0.31043I
a = 0.963926 + 0.306069I
b = 0.527150 0.827184I
2.88723 0.94663I 11.62610 + 0.41133I
u = 1.46831 0.31043I
a = 0.963926 0.306069I
b = 0.527150 + 0.827184I
2.88723 + 0.94663I 11.62610 0.41133I
u = 1.58481
a = 0.328758
b = 0.536398
11.0733 8.22380
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.371528
a = 2.93289
b = 0.802551
4.02071 7.78700
u = 1.75183
a = 0.408041
b = 0.905098
16.4780 32.5950
12
III. I
u
3
= hb, a 1, u 1i
(i) Arc colorings
a
5
=
0
1
a
10
=
1
0
a
11
=
1
1
a
6
=
1
0
a
7
=
1
0
a
3
=
1
0
a
12
=
0
1
a
9
=
1
0
a
4
=
1
1
a
8
=
1
1
a
2
=
2
1
a
1
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 18
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
12
u + 1
c
2
, c
4
, c
5
c
7
, c
8
, c
10
c
11
u 1
c
6
, c
9
u
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
7
c
8
, c
10
, c
11
c
12
y 1
c
6
, c
9
y
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
4.93480 18.0000
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u + 1)(u
12
12u
11
+ ··· 15u + 1)(u
24
+ 4u
23
+ ··· + 1789u + 1)
c
2
(u 1)
· (u
12
6u
10
+ u
9
+ 15u
8
3u
7
21u
6
+ 4u
5
+ 17u
4
4u
3
7u
2
+ u + 1)
· (u
24
+ 2u
23
+ ··· + 47u + 1)
c
3
(u + 1)(u
12
+ 3u
11
+ ··· + 3u
3
1)
· (u
24
3u
23
+ ··· + 14u + 1)
c
4
(u 1)(u
12
+ u
11
u
10
3u
8
2u
7
u
6
+ u
5
+ 3u
4
+ u
3
+ 2u
2
1)
· (u
24
+ 3u
23
+ ··· + 80u + 19)
c
5
(u 1)(u
12
8u
10
+ ··· + 2u 1)
· (u
24
10u
22
+ ··· + 6u + 1)
c
6
u(u
12
8u
10
+ ··· + 2u 1)(u
24
+ 3u
23
+ ··· + 696u + 37)
c
7
(u 1)
· (u
12
6u
10
u
9
+ 15u
8
+ 3u
7
21u
6
4u
5
+ 17u
4
+ 4u
3
7u
2
u + 1)
· (u
24
+ 2u
23
+ ··· + 47u + 1)
c
8
(u 1)(u
12
u
11
u
10
3u
8
+ 2u
7
u
6
u
5
+ 3u
4
u
3
+ 2u
2
1)
· (u
24
+ 3u
23
+ ··· + 80u + 19)
c
9
u(u
12
2u
10
u
9
3u
8
u
7
+ u
6
+ 2u
5
+ 3u
4
+ u
2
u 1)
· (u
24
u
23
+ ··· + 40u 8)
c
10
, c
11
(u 1)(u
12
8u
10
+ ··· 2u 1)
· (u
24
10u
22
+ ··· + 6u + 1)
c
12
(u + 1)(u
12
4u
11
+ ··· + 7u + 1)(u
24
+ 2u
23
+ ··· + 5u 1)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)(y
12
12y
11
+ ··· 43y + 1)(y
24
+ 44y
23
+ ··· 3160089y + 1)
c
2
, c
7
(y 1)(y
12
12y
11
+ ··· 15y + 1)(y
24
4y
23
+ ··· 1789y + 1)
c
3
(y 1)(y
12
7y
11
+ ··· 10y
2
+ 1)(y
24
+ 13y
23
+ ··· 214y + 1)
c
4
, c
8
(y 1)(y
12
3y
11
+ ··· 4y + 1)(y
24
+ 29y
23
+ ··· 5754y + 361)
c
5
, c
10
, c
11
(y 1)(y
12
16y
11
+ ··· 8y + 1)(y
24
20y
23
+ ··· 26y + 1)
c
6
y(y
12
16y
11
+ ··· 20y + 1)(y
24
+ 47y
23
+ ··· 161850y + 1369)
c
9
y(y
12
4y
11
+ ··· 3y + 1)(y
24
+ 23y
23
+ ··· 4064y + 64)
c
12
(y 1)(y
12
24y
11
+ ··· + 17y + 1)(y
24
60y
23
+ ··· 93y + 1)
18