11a
23
(K11a
23
)
A knot diagram
1
Linearized knot diagam
4 1 7 2 10 3 6 11 5 9 8
Solving Sequence
5,9
10 6
2,11
4 1 8 7 3
c
9
c
5
c
10
c
4
c
1
c
8
c
7
c
3
c
2
, c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
53
2u
52
+ ··· + b + 1, u
52
u
51
+ ··· + a u, u
54
2u
53
+ ··· + 2u
2
1i
I
u
2
= h−u
2
+ b + u, u
2
+ a u, u
3
u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 57 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
53
2u
52
+· · ·+b + 1, u
52
u
51
+· · ·+a u, u
54
2u
53
+· · ·+2u
2
1i
(i) Arc colorings
a
5
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
6
=
u
u
3
+ u
a
2
=
u
52
+ u
51
+ ··· + 7u
3
+ u
u
53
+ 2u
52
+ ··· 2u 1
a
11
=
u
2
+ 1
u
2
a
4
=
u
52
+ u
51
+ ··· + u 1
u
52
u
51
+ ··· u
2
u
a
1
=
u
6
+ u
4
2u
2
+ 1
u
6
+ u
2
a
8
=
u
4
u
2
+ 1
u
4
a
7
=
u
8
u
6
+ 3u
4
2u
2
+ 1
u
10
2u
8
+ 3u
6
4u
4
+ u
2
a
3
=
u
52
+ u
51
+ ··· + 3u
3
+ 2u
2u
53
+ 3u
52
+ ··· 2u 2
a
3
=
u
52
+ u
51
+ ··· + 3u
3
+ 2u
2u
53
+ 3u
52
+ ··· 2u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
53
+ 2u
52
+ ··· 13u 5
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
54
4u
53
+ ··· + 5u 1
c
2
u
54
+ 28u
53
+ ··· + 5u + 1
c
3
, c
6
u
54
u
53
+ ··· + 28u + 8
c
5
, c
9
u
54
+ 2u
53
+ ··· + 2u
2
1
c
7
u
54
21u
53
+ ··· 912u + 64
c
8
, c
10
, c
11
u
54
+ 14u
53
+ ··· + 4u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
54
28y
53
+ ··· 5y + 1
c
2
y
54
+ 44y
52
+ ··· 29y + 1
c
3
, c
6
y
54
21y
53
+ ··· 912y + 64
c
5
, c
9
y
54
14y
53
+ ··· 4y + 1
c
7
y
54
+ 19y
53
+ ··· 85248y + 4096
c
8
, c
10
, c
11
y
54
+ 54y
53
+ ··· 28y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.948112 + 0.298354I
a = 1.205050 + 0.065806I
b = 2.47632 + 1.36880I
4.67558 3.96496I 10.65253 + 5.36076I
u = 0.948112 0.298354I
a = 1.205050 0.065806I
b = 2.47632 1.36880I
4.67558 + 3.96496I 10.65253 5.36076I
u = 0.718756 + 0.708822I
a = 0.989080 + 0.349916I
b = 0.893237 0.687723I
1.72344 + 4.24877I 1.89208 7.05777I
u = 0.718756 0.708822I
a = 0.989080 0.349916I
b = 0.893237 + 0.687723I
1.72344 4.24877I 1.89208 + 7.05777I
u = 0.953732 + 0.349837I
a = 0.061370 + 0.782367I
b = 0.558618 0.498636I
0.69346 + 4.89748I 4.90328 6.49260I
u = 0.953732 0.349837I
a = 0.061370 0.782367I
b = 0.558618 + 0.498636I
0.69346 4.89748I 4.90328 + 6.49260I
u = 0.829612 + 0.586776I
a = 0.900184 + 0.101382I
b = 1.216120 0.670600I
1.80763 + 4.19776I 1.27767 7.87465I
u = 0.829612 0.586776I
a = 0.900184 0.101382I
b = 1.216120 + 0.670600I
1.80763 4.19776I 1.27767 + 7.87465I
u = 1.006640 + 0.186947I
a = 0.985399 + 0.649993I
b = 1.58875 0.30591I
4.34560 + 3.65314I 10.05122 3.06776I
u = 1.006640 0.186947I
a = 0.985399 0.649993I
b = 1.58875 + 0.30591I
4.34560 3.65314I 10.05122 + 3.06776I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.936944 + 0.259765I
a = 1.088760 0.644557I
b = 1.68766 + 0.11648I
4.90867 + 1.39018I 11.17255 4.35263I
u = 0.936944 0.259765I
a = 1.088760 + 0.644557I
b = 1.68766 0.11648I
4.90867 1.39018I 11.17255 + 4.35263I
u = 1.007510 + 0.341711I
a = 1.191860 0.125655I
b = 2.43976 0.96569I
3.43639 + 9.75051I 8.30305 9.36472I
u = 1.007510 0.341711I
a = 1.191860 + 0.125655I
b = 2.43976 + 0.96569I
3.43639 9.75051I 8.30305 + 9.36472I
u = 0.892491 + 0.183773I
a = 0.171964 0.552035I
b = 0.779603 + 0.338273I
1.67290 0.31402I 7.28536 + 0.85083I
u = 0.892491 0.183773I
a = 0.171964 + 0.552035I
b = 0.779603 0.338273I
1.67290 + 0.31402I 7.28536 0.85083I
u = 0.880753
a = 0.535851
b = 1.06380
1.51820 5.33260
u = 0.831263 + 0.825334I
a = 0.897031 0.632195I
b = 0.774607 + 0.728358I
1.86207 0.72710I 3.27217 + 0.I
u = 0.831263 0.825334I
a = 0.897031 + 0.632195I
b = 0.774607 0.728358I
1.86207 + 0.72710I 3.27217 + 0.I
u = 0.823137 + 0.844727I
a = 0.312862 0.944385I
b = 1.73844 0.80253I
2.56847 1.88759I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.823137 0.844727I
a = 0.312862 + 0.944385I
b = 1.73844 + 0.80253I
2.56847 + 1.88759I 0
u = 0.862381 + 0.818968I
a = 0.583547 + 0.090309I
b = 0.49799 + 1.75744I
4.38756 + 2.45269I 0
u = 0.862381 0.818968I
a = 0.583547 0.090309I
b = 0.49799 1.75744I
4.38756 2.45269I 0
u = 0.804605 + 0.877981I
a = 0.294081 + 1.060590I
b = 1.35489 + 0.61945I
4.52521 + 8.09679I 0
u = 0.804605 0.877981I
a = 0.294081 1.060590I
b = 1.35489 0.61945I
4.52521 8.09679I 0
u = 0.956300 + 0.721294I
a = 0.490288 + 0.770861I
b = 0.371501 0.639488I
1.09373 + 1.25845I 0
u = 0.956300 0.721294I
a = 0.490288 0.770861I
b = 0.371501 + 0.639488I
1.09373 1.25845I 0
u = 0.826228 + 0.868166I
a = 0.706693 0.315162I
b = 0.91045 1.19576I
7.09944 + 2.70045I 0
u = 0.826228 0.868166I
a = 0.706693 + 0.315162I
b = 0.91045 + 1.19576I
7.09944 2.70045I 0
u = 0.926090 + 0.797649I
a = 0.083529 0.557091I
b = 1.82650 + 0.41695I
4.18784 + 3.59964I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.926090 0.797649I
a = 0.083529 + 0.557091I
b = 1.82650 0.41695I
4.18784 3.59964I 0
u = 0.516406 + 0.577695I
a = 0.036990 + 1.075540I
b = 0.657739 + 0.015042I
2.66225 + 0.01615I 2.03217 0.16196I
u = 0.516406 0.577695I
a = 0.036990 1.075540I
b = 0.657739 0.015042I
2.66225 0.01615I 2.03217 + 0.16196I
u = 0.950127 + 0.790670I
a = 0.667535 0.810906I
b = 0.527757 + 0.770419I
1.49449 5.32145I 0
u = 0.950127 0.790670I
a = 0.667535 + 0.810906I
b = 0.527757 0.770419I
1.49449 + 5.32145I 0
u = 0.896659 + 0.861407I
a = 0.040376 + 0.871785I
b = 1.82541 + 0.01530I
9.95886 0.40591I 0
u = 0.896659 0.861407I
a = 0.040376 0.871785I
b = 1.82541 0.01530I
9.95886 + 0.40591I 0
u = 0.962624 + 0.798447I
a = 0.928929 0.233282I
b = 2.53779 + 2.34211I
2.13549 + 8.01692I 0
u = 0.962624 0.798447I
a = 0.928929 + 0.233282I
b = 2.53779 2.34211I
2.13549 8.01692I 0
u = 0.923219 + 0.851100I
a = 0.876432 + 0.007481I
b = 1.57894 1.93563I
9.87556 5.94354I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.923219 0.851100I
a = 0.876432 0.007481I
b = 1.57894 + 1.93563I
9.87556 + 5.94354I 0
u = 0.972034 + 0.812571I
a = 0.275106 + 0.680780I
b = 1.73893 0.27634I
6.64241 8.94495I 0
u = 0.972034 0.812571I
a = 0.275106 0.680780I
b = 1.73893 + 0.27634I
6.64241 + 8.94495I 0
u = 0.988340 + 0.806697I
a = 1.009690 + 0.227138I
b = 2.56726 1.93517I
3.9497 14.3488I 0
u = 0.988340 0.806697I
a = 1.009690 0.227138I
b = 2.56726 + 1.93517I
3.9497 + 14.3488I 0
u = 0.137568 + 0.670291I
a = 0.44103 + 1.74491I
b = 0.799841 0.000276I
0.68378 6.18510I 2.38929 + 5.41509I
u = 0.137568 0.670291I
a = 0.44103 1.74491I
b = 0.799841 + 0.000276I
0.68378 + 6.18510I 2.38929 5.41509I
u = 0.571380 + 0.287951I
a = 1.207730 0.200032I
b = 0.06093 + 1.45702I
1.12376 1.18488I 5.58028 + 5.43531I
u = 0.571380 0.287951I
a = 1.207730 + 0.200032I
b = 0.06093 1.45702I
1.12376 + 1.18488I 5.58028 5.43531I
u = 0.211819 + 0.582109I
a = 1.207330 + 0.116243I
b = 0.531021 0.291086I
1.59069 1.49648I 1.55257 + 1.21320I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.211819 0.582109I
a = 1.207330 0.116243I
b = 0.531021 + 0.291086I
1.59069 + 1.49648I 1.55257 1.21320I
u = 0.567584
a = 1.94525
b = 1.23770
2.29901 2.64120
u = 0.075195 + 0.497044I
a = 0.33607 2.18707I
b = 0.838168 0.011197I
2.17031 + 1.07616I 4.84925 0.51569I
u = 0.075195 0.497044I
a = 0.33607 + 2.18707I
b = 0.838168 + 0.011197I
2.17031 1.07616I 4.84925 + 0.51569I
10
II. I
u
2
= h−u
2
+ b + u, u
2
+ a u, u
3
u
2
+ 1i
(i) Arc colorings
a
5
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
6
=
u
u
2
+ u + 1
a
2
=
u
2
+ u
u
2
u
a
11
=
u
2
+ 1
u
2
a
4
=
u
2
+ u
u
2
a
1
=
0
u
a
8
=
u
u
2
+ u + 1
a
7
=
u
u
2
+ u + 1
a
3
=
u
2
+ u
u
2
a
3
=
u
2
+ u
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
2
+ 7u 10
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
3
c
2
, c
4
(u + 1)
3
c
3
, c
6
, c
7
u
3
c
5
u
3
+ u
2
1
c
8
u
3
u
2
+ 2u 1
c
9
u
3
u
2
+ 1
c
10
, c
11
u
3
+ u
2
+ 2u + 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
3
c
3
, c
6
, c
7
y
3
c
5
, c
9
y
3
y
2
+ 2y 1
c
8
, c
10
, c
11
y
3
+ 3y
2
+ 2y 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.662359 0.562280I
b = 0.662359 + 0.562280I
1.37919 2.82812I 4.28809 + 2.59975I
u = 0.877439 0.744862I
a = 0.662359 + 0.562280I
b = 0.662359 0.562280I
1.37919 + 2.82812I 4.28809 2.59975I
u = 0.754878
a = 1.32472
b = 1.32472
2.75839 16.4240
14
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
3
)(u
54
4u
53
+ ··· + 5u 1)
c
2
((u + 1)
3
)(u
54
+ 28u
53
+ ··· + 5u + 1)
c
3
, c
6
u
3
(u
54
u
53
+ ··· + 28u + 8)
c
4
((u + 1)
3
)(u
54
4u
53
+ ··· + 5u 1)
c
5
(u
3
+ u
2
1)(u
54
+ 2u
53
+ ··· + 2u
2
1)
c
7
u
3
(u
54
21u
53
+ ··· 912u + 64)
c
8
(u
3
u
2
+ 2u 1)(u
54
+ 14u
53
+ ··· + 4u + 1)
c
9
(u
3
u
2
+ 1)(u
54
+ 2u
53
+ ··· + 2u
2
1)
c
10
, c
11
(u
3
+ u
2
+ 2u + 1)(u
54
+ 14u
53
+ ··· + 4u + 1)
15
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y 1)
3
)(y
54
28y
53
+ ··· 5y + 1)
c
2
((y 1)
3
)(y
54
+ 44y
52
+ ··· 29y + 1)
c
3
, c
6
y
3
(y
54
21y
53
+ ··· 912y + 64)
c
5
, c
9
(y
3
y
2
+ 2y 1)(y
54
14y
53
+ ··· 4y + 1)
c
7
y
3
(y
54
+ 19y
53
+ ··· 85248y + 4096)
c
8
, c
10
, c
11
(y
3
+ 3y
2
+ 2y 1)(y
54
+ 54y
53
+ ··· 28y + 1)
16