12n
0642
(K12n
0642
)
A knot diagram
1
Linearized knot diagam
3 7 9 11 10 12 2 4 3 5 7 6
Solving Sequence
7,11 3,12
2 8
1,5
4 6 10 9
c
11
c
2
c
7
c
1
c
4
c
6
c
10
c
9
c
3
, c
5
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= hd u, u
2
+ 2c + 1, u
2
+ 2b 2u + 1, a 1, u
3
+ u
2
+ 3u 1i
I
u
2
= hd u, u
3
u
2
+ 2c + 3u 1, u
3
+ u
2
+ 2b 3u 1, a 1, u
4
+ 4u
2
+ 2u + 1i
I
u
3
= hd u, u
3
u
2
+ 2c + 3u 1, u
3
u
2
+ 2b + u 1, u
3
+ u
2
+ 2a 5u + 3, u
4
+ 4u
2
+ 2u + 1i
I
u
4
= hu
3
u
2
+ 2d + 5u + 1, u
3
+ c + 4u + 2, u
3
+ u
2
+ 2b 3u 1, a 1, u
4
+ 4u
2
+ 2u + 1i
I
u
5
= hu
3
+ u
2
+ 2d + 2u + 2, u
3
+ 3u
2
+ 4c + 4u + 4, u
3
+ u
2
+ b + u + 1, u
3
u
2
+ 4a 2u,
u
4
+ 3u
3
+ 4u
2
+ 4u + 4i
I
u
6
= hd u, c u + 2, b + 1, 2a + u + 1, u
2
u + 2i
I
u
7
= hd + u 1, 2c + u 1, b + 1, 2a + u + 1, u
2
u + 2i
I
u
8
= hd + u 1, 2c + u 1, b + 2u, a 1, u
2
u + 2i
I
u
9
= hd, c + u, b + u, a + 1, u
2
+ 1i
I
u
10
= hd + u, c + u + 1, b 1, a, u
2
+ 1i
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
1
I
u
11
= hd + u, c + u + 1, b + u, a + 1, u
2
+ 1i
I
u
12
= hd + u, cb + bu u 1, a + 1, u
2
+ 1i
I
v
1
= ha, d v, av + c v + 1, b 1, v
2
+ 1i
* 12 irreducible components of dim
C
= 0, with total 33 representations.
* 1 irreducible components of dim
C
= 1
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2
I. I
u
1
= hd u, u
2
+ 2c + 1, u
2
+ 2b 2u + 1, a 1, u
3
+ u
2
+ 3u 1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
3
=
1
1
2
u
2
+ u
1
2
a
12
=
1
u
2
a
2
=
1
1
2
u
2
+ u
1
2
a
8
=
u
1
2
u
2
u +
1
2
a
1
=
u
2
+ 1
4u + 1
a
5
=
1
2
u
2
1
2
u
a
4
=
1
2
u
2
u
1
2
u
a
6
=
u
u
2
2u + 1
a
10
=
1
2
u
2
+ u +
1
2
u
2
a
9
=
1
2
u
2
+
1
2
1
2
u
2
u +
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
+ 8u + 18
3
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
3
+ 5u
2
+ 11u 1
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
c
11
, c
12
u
3
+ u
2
+ 3u 1
4
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
3
3y
2
+ 131y 1
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
c
11
, c
12
y
3
+ 5y
2
+ 11y 1
5
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.295598
a = 1.00000
b = 0.248091
c = 0.543689
d = 0.295598
0.476945 20.7140
u = 0.64780 + 1.72143I
a = 1.00000
b = 0.12405 + 2.83658I
c = 0.771845 + 1.115140I
d = 0.64780 + 1.72143I
12.0985 12.7092I 2.64285 + 4.85033I
u = 0.64780 1.72143I
a = 1.00000
b = 0.12405 2.83658I
c = 0.771845 1.115140I
d = 0.64780 1.72143I
12.0985 + 12.7092I 2.64285 4.85033I
6
II.
I
u
2
= hdu, u
3
u
2
+2c+3u1, u
3
+u
2
+2b3u1, a1, u
4
+4u
2
+2u+1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
3
=
1
1
2
u
3
1
2
u
2
+
3
2
u +
1
2
a
12
=
1
u
2
a
2
=
1
1
2
u
3
+
1
2
u
2
+
3
2
u +
1
2
a
8
=
u
1
2
u
3
1
2
u
2
+
1
2
u
1
2
a
1
=
u
2
+ 1
2u
2
+ 2u + 1
a
5
=
1
2
u
3
+
1
2
u
2
3
2
u +
1
2
u
a
4
=
1
2
u
3
+
1
2
u
2
5
2
u +
1
2
u
a
6
=
u
u
3
+ u
a
10
=
1
2
u
3
+
1
2
u
2
+
3
2
u +
3
2
u
2
a
9
=
u
3
+ 4u + 2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
+ 14u + 12
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
4
+ 8u
3
+ 18u
2
+ 4u + 1
c
2
, c
4
, c
5
c
6
, c
7
, c
10
c
11
, c
12
u
4
+ 4u
2
+ 2u + 1
c
3
, c
8
, c
9
u
4
+ 3u
3
+ 4u
2
+ 4u + 4
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
4
28y
3
+ 262y
2
+ 20y + 1
c
2
, c
4
, c
5
c
6
, c
7
, c
10
c
11
, c
12
y
4
+ 8y
3
+ 18y
2
+ 4y + 1
c
3
, c
8
, c
9
y
4
y
3
+ 16y + 16
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.264316 + 0.422125I
a = 1.00000
b = 0.219104 + 0.751390I
c = 0.780896 0.751390I
d = 0.264316 + 0.422125I
2.86313 1.17563I 8.79089 + 5.96277I
u = 0.264316 0.422125I
a = 1.00000
b = 0.219104 0.751390I
c = 0.780896 + 0.751390I
d = 0.264316 0.422125I
2.86313 + 1.17563I 8.79089 5.96277I
u = 0.26432 + 1.99036I
a = 1.00000
b = 1.28090 1.27441I
c = 0.280896 + 1.274410I
d = 0.26432 + 1.99036I
19.3125 + 4.7517I 3.20911 2.00586I
u = 0.26432 1.99036I
a = 1.00000
b = 1.28090 + 1.27441I
c = 0.280896 1.274410I
d = 0.26432 1.99036I
19.3125 4.7517I 3.20911 + 2.00586I
10
III. I
u
3
= hd u, u
3
u
2
+ 2c + 3u 1, u
3
u
2
+ 2b + u 1, u
3
+ u
2
+
2a 5u + 3, u
4
+ 4u
2
+ 2u + 1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
3
=
1
2
u
3
1
2
u
2
+
5
2
u
3
2
1
2
u
3
+
1
2
u
2
1
2
u +
1
2
a
12
=
1
u
2
a
2
=
1
2
u
3
1
2
u
2
+
5
2
u
3
2
1
a
8
=
3
2
u
3
1
2
u
2
+
11
2
u +
5
2
1
2
u
3
+
1
2
u
2
3
2
u
1
2
a
1
=
u
2
+ 1
2u
2
+ 2u + 1
a
5
=
1
2
u
3
+
1
2
u
2
3
2
u +
1
2
u
a
4
=
1
2
u
3
+
1
2
u
2
5
2
u +
1
2
u
a
6
=
u
u
3
+ u
a
10
=
1
2
u
3
+
1
2
u
2
+
3
2
u +
3
2
u
2
a
9
=
u
3
+ 4u + 2
1
2
u
3
1
2
u
2
3
2
u
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
+ 14u + 12
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
4
u
3
+ 16u + 16
c
2
, c
7
u
4
+ 3u
3
+ 4u
2
+ 4u + 4
c
3
, c
4
, c
5
c
6
, c
8
, c
9
c
10
, c
11
, c
12
u
4
+ 4u
2
+ 2u + 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
4
y
3
+ 64y
2
256y + 256
c
2
, c
7
y
4
y
3
+ 16y + 16
c
3
, c
4
, c
5
c
6
, c
8
, c
9
c
10
, c
11
, c
12
y
4
+ 8y
3
+ 18y
2
+ 4y + 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.264316 + 0.422125I
a = 2.04521 + 1.17351I
b = 0.516580 0.329264I
c = 0.780896 0.751390I
d = 0.264316 + 0.422125I
2.86313 1.17563I 8.79089 + 5.96277I
u = 0.264316 0.422125I
a = 2.04521 1.17351I
b = 0.516580 + 0.329264I
c = 0.780896 + 0.751390I
d = 0.264316 0.422125I
2.86313 + 1.17563I 8.79089 5.96277I
u = 0.26432 + 1.99036I
a = 0.454787 + 0.715953I
b = 0.01658 + 3.26477I
c = 0.280896 + 1.274410I
d = 0.26432 + 1.99036I
19.3125 + 4.7517I 3.20911 2.00586I
u = 0.26432 1.99036I
a = 0.454787 0.715953I
b = 0.01658 3.26477I
c = 0.280896 1.274410I
d = 0.26432 1.99036I
19.3125 4.7517I 3.20911 + 2.00586I
14
IV. I
u
4
= hu
3
u
2
+ 2d + 5u + 1, u
3
+ c + 4u + 2, u
3
+ u
2
+ 2b 3u
1, a 1, u
4
+ 4u
2
+ 2u + 1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
3
=
1
1
2
u
3
1
2
u
2
+
3
2
u +
1
2
a
12
=
1
u
2
a
2
=
1
1
2
u
3
+
1
2
u
2
+
3
2
u +
1
2
a
8
=
u
1
2
u
3
1
2
u
2
+
1
2
u
1
2
a
1
=
u
2
+ 1
2u
2
+ 2u + 1
a
5
=
u
3
4u 2
1
2
u
3
+
1
2
u
2
5
2
u
1
2
a
4
=
1
2
u
3
1
2
u
2
3
2
u
3
2
1
2
u
3
+
1
2
u
2
5
2
u
1
2
a
6
=
u
u
3
+ u
a
10
=
1
2
u
3
1
2
u
2
+
5
2
u
1
2
1
2
u
3
1
2
u
2
1
2
u
3
2
a
9
=
1
2
u
3
1
2
u
2
+
3
2
u
1
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
+ 14u + 12
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
4
+ 8u
3
+ 18u
2
+ 4u + 1
c
2
, c
3
, c
6
c
7
, c
8
, c
9
c
11
, c
12
u
4
+ 4u
2
+ 2u + 1
c
4
, c
5
, c
10
u
4
+ 3u
3
+ 4u
2
+ 4u + 4
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
4
28y
3
+ 262y
2
+ 20y + 1
c
2
, c
3
, c
6
c
7
, c
8
, c
9
c
11
, c
12
y
4
+ 8y
3
+ 18y
2
+ 4y + 1
c
4
, c
5
, c
10
y
4
y
3
+ 16y + 16
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.264316 + 0.422125I
a = 1.00000
b = 0.219104 + 0.751390I
c = 1.06556 1.70176I
d = 0.045213 1.173520I
2.86313 1.17563I 8.79089 + 5.96277I
u = 0.264316 0.422125I
a = 1.00000
b = 0.219104 0.751390I
c = 1.06556 + 1.70176I
d = 0.045213 + 1.173520I
2.86313 + 1.17563I 8.79089 5.96277I
u = 0.26432 + 1.99036I
a = 1.00000
b = 1.28090 1.27441I
c = 0.065564 0.493715I
d = 1.54521 0.71595I
19.3125 + 4.7517I 3.20911 2.00586I
u = 0.26432 1.99036I
a = 1.00000
b = 1.28090 + 1.27441I
c = 0.065564 + 0.493715I
d = 1.54521 + 0.71595I
19.3125 4.7517I 3.20911 + 2.00586I
18
V. I
u
5
= hu
3
+ u
2
+ 2d + 2u + 2, u
3
+ 3u
2
+ 4c + 4u + 4, u
3
+ u
2
+ b + u +
1, u
3
u
2
+ 4a 2u, u
4
+ 3u
3
+ 4u
2
+ 4u + 4i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
3
=
1
4
u
3
+
1
4
u
2
+
1
2
u
u
3
u
2
u 1
a
12
=
1
u
2
a
2
=
1
4
u
3
+
1
4
u
2
+
1
2
u
1
a
8
=
3
4
u
3
+
5
4
u
2
+ u + 2
1
2
u
3
1
2
u
2
1
a
1
=
u
2
+ 1
3u
3
+ 2u
2
+ 4u + 4
a
5
=
1
4
u
3
3
4
u
2
u 1
1
2
u
3
1
2
u
2
u 1
a
4
=
1
4
u
3
1
4
u
2
1
2
u
3
1
2
u
2
u 1
a
6
=
u
u
3
+ u
a
10
=
1
4
u
3
+
1
4
u
2
+
1
2
u + 1
u
3
2u
2
u 3
a
9
=
1
2
u
3
u
2
1
2
u 1
1
2
u
3
+
3
2
u
2
+ u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
3
5u
2
6u + 2
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
4
+ 8u
3
+ 18u
2
+ 4u + 1
c
2
, c
3
, c
4
c
5
, c
7
, c
8
c
9
, c
10
u
4
+ 4u
2
+ 2u + 1
c
6
, c
11
, c
12
u
4
+ 3u
3
+ 4u
2
+ 4u + 4
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
4
28y
3
+ 262y
2
+ 20y + 1
c
2
, c
3
, c
4
c
5
, c
7
, c
8
c
9
, c
10
y
4
+ 8y
3
+ 18y
2
+ 4y + 1
c
6
, c
11
, c
12
y
4
y
3
+ 16y + 16
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.045213 + 1.173520I
a = 0.367842 + 0.211063I
b = 0.516580 + 0.329264I
c = 0.032782 0.850878I
d = 0.264316 0.422125I
2.86313 + 1.17563I 8.79089 5.96277I
u = 0.045213 1.173520I
a = 0.367842 0.211063I
b = 0.516580 0.329264I
c = 0.032782 + 0.850878I
d = 0.264316 + 0.422125I
2.86313 1.17563I 8.79089 + 5.96277I
u = 1.54521 + 0.71595I
a = 0.632158 + 0.995180I
b = 0.01658 3.26477I
c = 0.532782 0.246857I
d = 0.26432 1.99036I
19.3125 4.7517I 3.20911 + 2.00586I
u = 1.54521 0.71595I
a = 0.632158 0.995180I
b = 0.01658 + 3.26477I
c = 0.532782 + 0.246857I
d = 0.26432 + 1.99036I
19.3125 + 4.7517I 3.20911 2.00586I
22
VI. I
u
6
= hd u, c u + 2, b + 1, 2a + u + 1, u
2
u + 2i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
3
=
1
2
u
1
2
1
a
12
=
1
u + 2
a
2
=
1
2
u
1
2
1
a
8
=
1
2
u
3
2
1
a
1
=
u 1
u + 2
a
5
=
u 2
u
a
4
=
2
u
a
6
=
u
2
a
10
=
u 1
u 2
a
9
=
3
2
u +
1
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
2
+ 3u + 4
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
c
11
, c
12
u
2
u + 2
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
2
y + 16
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
c
11
, c
12
y
2
+ 3y + 4
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.50000 + 1.32288I
a = 0.750000 0.661438I
b = 1.00000
c = 1.50000 + 1.32288I
d = 0.50000 + 1.32288I
8.22467 2.00000
u = 0.50000 1.32288I
a = 0.750000 + 0.661438I
b = 1.00000
c = 1.50000 1.32288I
d = 0.50000 1.32288I
8.22467 2.00000
26
VII. I
u
7
= hd + u 1, 2c + u 1, b + 1, 2a + u + 1, u
2
u + 2i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
3
=
1
2
u
1
2
1
a
12
=
1
u + 2
a
2
=
1
2
u
1
2
1
a
8
=
1
2
u
3
2
1
a
1
=
u 1
u + 2
a
5
=
1
2
u +
1
2
u + 1
a
4
=
1
2
u
1
2
u + 1
a
6
=
u
2
a
10
=
1
2
u +
1
2
u 1
a
9
=
1
2
u
1
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2
27
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
2
+ 3u + 4
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
c
11
, c
12
u
2
u + 2
28
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
2
y + 16
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
c
11
, c
12
y
2
+ 3y + 4
29
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.50000 + 1.32288I
a = 0.750000 0.661438I
b = 1.00000
c = 0.250000 0.661438I
d = 0.50000 1.32288I
8.22467 2.00000
u = 0.50000 1.32288I
a = 0.750000 + 0.661438I
b = 1.00000
c = 0.250000 + 0.661438I
d = 0.50000 + 1.32288I
8.22467 2.00000
30
VIII. I
u
8
= hd + u 1, 2c + u 1, b + 2u, a 1, u
2
u + 2i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
3
=
1
2u
a
12
=
1
u + 2
a
2
=
1
u 2
a
8
=
u
2u + 2
a
1
=
u 1
u + 2
a
5
=
1
2
u +
1
2
u + 1
a
4
=
1
2
u
1
2
u + 1
a
6
=
u
2
a
10
=
1
2
u +
1
2
u 1
a
9
=
1
2
u
1
2
u + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2
31
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
2
+ 3u + 4
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
c
11
, c
12
u
2
u + 2
32
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
2
y + 16
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
c
11
, c
12
y
2
+ 3y + 4
33
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 0.50000 + 1.32288I
a = 1.00000
b = 1.00000 2.64575I
c = 0.250000 0.661438I
d = 0.50000 1.32288I
8.22467 2.00000
u = 0.50000 1.32288I
a = 1.00000
b = 1.00000 + 2.64575I
c = 0.250000 + 0.661438I
d = 0.50000 + 1.32288I
8.22467 2.00000
34
IX. I
u
9
= hd, c + u, b + u, a + 1, u
2
+ 1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
3
=
1
u
a
12
=
1
1
a
2
=
1
u + 1
a
8
=
u
1
a
1
=
0
1
a
5
=
u
0
a
4
=
u
0
a
6
=
u
0
a
10
=
1
0
a
9
=
u + 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4
35
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
2
c
2
, c
3
, c
6
c
7
, c
8
, c
9
c
11
, c
12
u
2
+ 1
c
4
, c
5
, c
10
u
2
36
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y 1)
2
c
2
, c
3
, c
6
c
7
, c
8
, c
9
c
11
, c
12
(y + 1)
2
c
4
, c
5
, c
10
y
2
37
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
9
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 1.00000
b = 1.000000I
c = 1.000000I
d = 0
4.93480 4.00000
u = 1.000000I
a = 1.00000
b = 1.000000I
c = 1.000000I
d = 0
4.93480 4.00000
38
X. I
u
10
= hd + u, c + u + 1, b 1, a, u
2
+ 1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
3
=
0
1
a
12
=
1
1
a
2
=
0
1
a
8
=
0
u
a
1
=
0
1
a
5
=
u 1
u
a
4
=
1
u
a
6
=
u
0
a
10
=
u
1
a
9
=
u
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4
39
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
u
2
c
3
, c
4
, c
5
c
6
, c
8
, c
9
c
10
, c
11
, c
12
u
2
+ 1
40
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
7
y
2
c
3
, c
4
, c
5
c
6
, c
8
, c
9
c
10
, c
11
, c
12
(y + 1)
2
41
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
10
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0
b = 1.00000
c = 1.00000 1.00000I
d = 1.000000I
4.93480 4.00000
u = 1.000000I
a = 0
b = 1.00000
c = 1.00000 + 1.00000I
d = 1.000000I
4.93480 4.00000
42
XI. I
u
11
= hd + u, c + u + 1, b + u, a + 1, u
2
+ 1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
3
=
1
u
a
12
=
1
1
a
2
=
1
u + 1
a
8
=
u
1
a
1
=
0
1
a
5
=
u 1
u
a
4
=
1
u
a
6
=
u
0
a
10
=
u
1
a
9
=
u
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4
43
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
2
c
2
, c
4
, c
5
c
6
, c
7
, c
10
c
11
, c
12
u
2
+ 1
c
3
, c
8
, c
9
u
2
44
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y 1)
2
c
2
, c
4
, c
5
c
6
, c
7
, c
10
c
11
, c
12
(y + 1)
2
c
3
, c
8
, c
9
y
2
45
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
11
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 1.00000
b = 1.000000I
c = 1.00000 1.00000I
d = 1.000000I
4.93480 4.00000
u = 1.000000I
a = 1.00000
b = 1.000000I
c = 1.00000 + 1.00000I
d = 1.000000I
4.93480 4.00000
46
XII. I
u
12
= hd + u, cb + bu u 1, a + 1, u
2
+ 1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
3
=
1
b
a
12
=
1
1
a
2
=
1
b + 1
a
8
=
u
bu
a
1
=
0
1
a
5
=
c
u
a
4
=
c + u
u
a
6
=
u
0
a
10
=
cu + 1
1
a
9
=
cu + u + 1
bu 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
47
(iv) Complex Volumes and Cusp Shapes
Solution to I
u
12
1(vol +
1CS) Cusp shape
u = ···
a = ···
b = ···
c = ···
d = ···
6.57974 2.00000
48
XIII. I
v
1
= ha, d v, av + c v + 1, b 1, v
2
+ 1i
(i) Arc colorings
a
7
=
v
0
a
11
=
1
0
a
3
=
0
1
a
12
=
1
0
a
2
=
1
1
a
8
=
0
v
a
1
=
1
0
a
5
=
v 1
v
a
4
=
1
v
a
6
=
v
0
a
10
=
v
1
a
9
=
v
v 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4
49
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
2
c
2
, c
3
, c
4
c
5
, c
7
, c
8
c
9
, c
10
u
2
+ 1
c
6
, c
11
, c
12
u
2
50
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y 1)
2
c
2
, c
3
, c
4
c
5
, c
7
, c
8
c
9
, c
10
(y + 1)
2
c
6
, c
11
, c
12
y
2
51
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.000000I
a = 0
b = 1.00000
c = 1.00000 + 1.00000I
d = 1.000000I
4.93480 4.00000
v = 1.000000I
a = 0
b = 1.00000
c = 1.00000 1.00000I
d = 1.000000I
4.93480 4.00000
52
XIV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
2
(u 1)
6
(u
2
+ 3u + 4)
3
(u
3
+ 5u
2
+ 11u 1)(u
4
u
3
+ 16u + 16)
· (u
4
+ 8u
3
+ 18u
2
+ 4u + 1)
3
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
c
11
, c
12
u
2
(u
2
+ 1)
3
(u
2
u + 2)
3
(u
3
+ u
2
+ 3u 1)(u
4
+ 4u
2
+ 2u + 1)
3
· (u
4
+ 3u
3
+ 4u
2
+ 4u + 4)
53
XV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
2
(y 1)
6
(y
2
y + 16)
3
(y
3
3y
2
+ 131y 1)
· (y
4
28y
3
+ 262y
2
+ 20y + 1)
3
(y
4
y
3
+ 64y
2
256y + 256)
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
c
11
, c
12
y
2
(y + 1)
6
(y
2
+ 3y + 4)
3
(y
3
+ 5y
2
+ 11y 1)(y
4
y
3
+ 16y + 16)
· (y
4
+ 8y
3
+ 18y
2
+ 4y + 1)
3
54