12n
0643
(K12n
0643
)
A knot diagram
1
Linearized knot diagam
3 8 12 8 11 10 2 4 3 6 5 9
Solving Sequence
5,8
4
9,12
3 2 1 7 11 6 10
c
4
c
8
c
3
c
2
c
1
c
7
c
11
c
5
c
10
c
6
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−68009u
16
44301u
15
+ ··· + 147102b + 345073, a 1, u
17
+ 9u
15
+ ··· + 2u + 1i
I
u
2
= h−2u
5
5u
4
+ 13u
2
+ 34b + 15u 21, 59u
5
+ 122u
4
+ 187u
3
+ 135u
2
+ 34a + 25u + 628,
u
6
+ 2u
5
+ 3u
4
+ 2u
3
+ 10u 1i
I
u
3
= h−42u
10
15u
9
68u
8
63u
7
114u
6
63u
5
+ 35u
4
+ 150u
3
+ 89u
2
+ 23b + 116u + 25, a + 1,
u
11
+ 2u
9
+ u
8
+ 3u
7
+ u
6
3u
4
u
3
4u
2
1i
I
u
4
= h−6u
11
5u
10
+ 48u
9
118u
8
+ 124u
7
211u
6
246u
5
51u
4
750u
3
+ 85u
2
+ 236b 746u 12,
65u
11
585u
10
+ ··· + 472a 5416,
u
12
5u
11
+ 15u
10
32u
9
+ 58u
8
77u
7
+ 103u
6
93u
5
+ 100u
4
55u
3
+ 48u
2
12u + 8i
* 4 irreducible components of dim
C
= 0, with total 46 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−6.80 × 10
4
u
16
4.43 × 10
4
u
15
+ · · · + 1.47 × 10
5
b + 3.45 × 10
5
, a
1, u
17
+ 9u
15
+ · · · + 2u + 1i
(i) Arc colorings
a
5
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
9
=
u
u
3
+ u
a
12
=
1
0.462325u
16
+ 0.301158u
15
+ ··· 5.67284u 2.34581
a
3
=
0.462325u
16
0.301158u
15
+ ··· + 5.67284u + 3.34581
0.287392u
16
+ 0.502305u
15
+ ··· 1.98646u 0.919770
a
2
=
0.462325u
16
0.301158u
15
+ ··· + 5.67284u + 3.34581
0.279955u
16
+ 0.529707u
15
+ ··· 3.05110u 1.22093
a
1
=
0.00743702u
16
0.0274028u
15
+ ··· + 1.06464u + 1.30116
0.190147u
16
+ 0.239167u
15
+ ··· 4.54595u 2.01725
a
7
=
1.13202u
16
0.272111u
15
+ ··· + 8.20193u + 0.644696
0.0817596u
16
0.0818956u
15
+ ··· + 1.62497u + 0.308167
a
11
=
0.462325u
16
+ 0.301158u
15
+ ··· 5.67284u 1.34581
0.462325u
16
+ 0.301158u
15
+ ··· 5.67284u 2.34581
a
6
=
0.757155u
16
0.173743u
15
+ ··· 4.75102u 0.727196
0.294829u
16
0.474902u
15
+ ··· + 0.921816u + 0.618612
a
10
=
1.21378u
16
+ 0.190215u
15
+ ··· 6.57697u 0.336528
0.456629u
16
+ 0.363958u
15
+ ··· 1.82594u + 0.390668
(ii) Obstruction class = 1
(iii) Cusp Shapes =
173298
24517
u
16
19700
24517
u
15
+ ··· +
1212498
24517
u
66405
24517
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
17
+ 25u
16
+ ··· 5u + 1
c
2
, c
7
, c
12
u
17
+ u
16
+ ··· + u + 1
c
3
u
17
11u
16
+ ··· 48u + 8
c
4
, c
8
u
17
+ 9u
15
+ ··· + 2u + 1
c
5
, c
6
, c
10
c
11
u
17
+ 7u
16
+ ··· + 72u + 8
c
9
u
17
20u
15
+ ··· + 194u + 259
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
17
65y
16
+ ··· + 87y 1
c
2
, c
7
, c
12
y
17
25y
16
+ ··· 5y 1
c
3
y
17
+ 3y
16
+ ··· + 672y 64
c
4
, c
8
y
17
+ 18y
16
+ ··· + 20y 1
c
5
, c
6
, c
10
c
11
y
17
+ 19y
16
+ ··· + 288y 64
c
9
y
17
40y
16
+ ··· 96526y 67081
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.273982 + 1.067890I
a = 1.00000
b = 0.476176 + 0.479879I
0.94573 + 1.67377I 6.92989 3.16143I
u = 0.273982 1.067890I
a = 1.00000
b = 0.476176 0.479879I
0.94573 1.67377I 6.92989 + 3.16143I
u = 0.124569 + 1.229950I
a = 1.00000
b = 0.37277 + 1.64716I
5.40408 + 3.79366I 9.42026 1.67014I
u = 0.124569 1.229950I
a = 1.00000
b = 0.37277 1.64716I
5.40408 3.79366I 9.42026 + 1.67014I
u = 0.747531 + 1.177200I
a = 1.00000
b = 0.11531 1.52558I
5.74347 3.70748I 0.330584 + 0.385083I
u = 0.747531 1.177200I
a = 1.00000
b = 0.11531 + 1.52558I
5.74347 + 3.70748I 0.330584 0.385083I
u = 0.18378 + 1.48034I
a = 1.00000
b = 0.958979 0.657777I
12.88920 + 1.26003I 11.26337 0.06200I
u = 0.18378 1.48034I
a = 1.00000
b = 0.958979 + 0.657777I
12.88920 1.26003I 11.26337 + 0.06200I
u = 0.435602 + 0.235065I
a = 1.00000
b = 0.02738 1.68451I
10.39050 1.51785I 0.08130 + 5.70683I
u = 0.435602 0.235065I
a = 1.00000
b = 0.02738 + 1.68451I
10.39050 + 1.51785I 0.08130 5.70683I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.438102 + 0.020053I
a = 1.00000
b = 0.092822 + 0.789763I
1.61479 + 1.53966I 1.79490 4.96374I
u = 0.438102 0.020053I
a = 1.00000
b = 0.092822 0.789763I
1.61479 1.53966I 1.79490 + 4.96374I
u = 0.52463 + 1.57423I
a = 1.00000
b = 0.970536 0.552496I
13.1856 7.5502I 11.07949 + 4.57676I
u = 0.52463 1.57423I
a = 1.00000
b = 0.970536 + 0.552496I
13.1856 + 7.5502I 11.07949 4.57676I
u = 0.314233
a = 1.00000
b = 0.331071
0.707107 14.3070
u = 0.84444 + 1.52914I
a = 1.00000
b = 0.37526 + 1.57337I
6.35474 + 12.51650I 8.10916 5.80852I
u = 0.84444 1.52914I
a = 1.00000
b = 0.37526 1.57337I
6.35474 12.51650I 8.10916 + 5.80852I
6
II. I
u
2
= h−2u
5
5u
4
+ 13u
2
+ 34b + 15u 21, 59u
5
+ 122u
4
+ · · · + 34a +
628, u
6
+ 2u
5
+ 3u
4
+ 2u
3
+ 10u 1i
(i) Arc colorings
a
5
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
9
=
u
u
3
+ u
a
12
=
1.73529u
5
3.58824u
4
+ ··· 0.735294u 18.4706
0.0588235u
5
+ 0.147059u
4
+ ··· 0.441176u + 0.617647
a
3
=
1.47059u
5
+ 3.17647u
4
+ ··· + 0.470588u + 14.9412
0.0588235u
5
+ 0.147059u
4
+ ··· 0.441176u 0.382353
a
2
=
1.47059u
5
+ 3.17647u
4
+ ··· + 0.470588u + 14.9412
0.0588235u
5
0.147059u
4
+ ··· + 0.441176u 0.617647
a
1
=
1.82353u
5
4.05882u
4
+ ··· 0.823529u 18.6471
0.323529u
5
+ 0.0588235u
4
+ ··· + 2.32353u + 0.147059
a
7
=
2.23529u
5
+ 4.58824u
4
+ ··· + 0.235294u + 22.4706
0.117647u
5
0.294118u
4
+ ··· 0.117647u 0.735294
a
11
=
1.67647u
5
3.44118u
4
+ ··· 1.17647u 17.8529
0.0588235u
5
+ 0.147059u
4
+ ··· 0.441176u + 0.617647
a
6
=
0.882353u
5
1.70588u
4
+ ··· + 0.117647u 9.26471
0.176471u
5
+ 0.441176u
4
+ ··· 0.323529u + 0.352941
a
10
=
2.35294u
5
4.88235u
4
+ ··· 0.352941u 23.2059
0.117647u
5
+ 0.294118u
4
+ ··· + 0.117647u + 0.735294
(ii) Obstruction class = 1
(iii) Cusp Shapes =
16
17
u
5
40
17
u
4
4u
3
100
17
u
2
16
17
u
338
17
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
6
+ 6u
5
+ 5u
4
14u
3
+ 26u
2
+ 144u + 121
c
2
, c
7
, c
12
u
6
+ 2u
5
u
4
+ 2u
2
10u 11
c
3
(u
3
+ u
2
1)
2
c
4
, c
8
u
6
+ 2u
5
+ 3u
4
+ 2u
3
+ 10u 1
c
5
, c
6
, c
10
c
11
(u
3
u
2
+ 2u 1)
2
c
9
u
6
+ 5u
5
+ 4u
4
11u
3
14u
2
8
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
6
26y
5
+ 245y
4
1422y
3
+ 5918y
2
14444y + 14641
c
2
, c
7
, c
12
y
6
6y
5
+ 5y
4
+ 14y
3
+ 26y
2
144y + 121
c
3
(y
3
y
2
+ 2y 1)
2
c
4
, c
8
y
6
+ 2y
5
+ y
4
46y
3
46y
2
100y + 1
c
5
, c
6
, c
10
c
11
(y
3
+ 3y
2
+ 2y 1)
2
c
9
y
6
17y
5
+ 98y
4
249y
3
+ 132y
2
+ 224y + 64
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.714259 + 0.979949I
a = 1.55592 0.28013I
b = 0.215080 1.307140I
1.11345 + 5.65624I 6.98049 5.95889I
u = 0.714259 0.979949I
a = 1.55592 + 0.28013I
b = 0.215080 + 1.307140I
1.11345 5.65624I 6.98049 + 5.95889I
u = 1.85465
a = 0.0537944
b = 0.569840
7.16171 20.0390
u = 0.0997696
a = 18.5893
b = 0.569840
7.16171 20.0390
u = 0.83682 + 1.72481I
a = 0.622526 0.112080I
b = 0.215080 + 1.307140I
1.11345 5.65624I 6.98049 + 5.95889I
u = 0.83682 1.72481I
a = 0.622526 + 0.112080I
b = 0.215080 1.307140I
1.11345 + 5.65624I 6.98049 5.95889I
10
III. I
u
3
=
h−42u
10
15u
9
+· · ·+ 23b + 25 , a + 1, u
11
+2u
9
+u
8
+3u
7
+u
6
3u
4
u
3
4u
2
1i
(i) Arc colorings
a
5
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
9
=
u
u
3
+ u
a
12
=
1
1.82609u
10
+ 0.652174u
9
+ ··· 5.04348u 1.08696
a
3
=
1.82609u
10
+ 0.652174u
9
+ ··· 5.04348u 0.0869565
1.13043u
10
0.739130u
9
+ ··· 2.21739u + 3.56522
a
2
=
1.82609u
10
+ 0.652174u
9
+ ··· 5.04348u 0.0869565
1.82609u
10
0.347826u
9
+ ··· 4.04348u + 2.91304
a
1
=
0.695652u
10
+ 0.391304u
9
+ ··· 1.82609u 1.65217
2.30435u
10
+ 0.608696u
9
+ ··· 6.17391u 1.34783
a
7
=
1.65217u
10
0.695652u
9
+ ··· 4.08696u + 1.82609
1.08696u
10
1.82609u
9
+ ··· 0.478261u + 5.04348
a
11
=
1.82609u
10
+ 0.652174u
9
+ ··· 5.04348u 2.08696
1.82609u
10
+ 0.652174u
9
+ ··· 5.04348u 1.08696
a
6
=
2.26087u
10
+ 0.478261u
9
+ ··· + 5.43478u 2.13043
0.434783u
10
+ 1.13043u
9
+ ··· + 0.391304u 4.21739
a
10
=
0.565217u
10
1.13043u
9
+ ··· + 3.60870u + 3.21739
2.82609u
10
0.652174u
9
+ ··· + 9.04348u + 1.08696
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
31
23
u
10
+
7
23
u
9
48
23
u
8
+
11
23
u
7
71
23
u
6
+
34
23
u
5
+
91
23
u
4
+
137
23
u
3
17
23
u
2
+
21
23
u
257
23
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
11
11u
10
+ ··· + 7u 1
c
2
u
11
+ u
10
5u
9
5u
8
+ 9u
7
+ 8u
6
8u
5
7u
4
+ 4u
3
+ 3u
2
u 1
c
3
u
11
+ 4u
10
+ 10u
9
+ 16u
8
+ 16u
7
+ 7u
6
3u
5
5u
4
+ 2u
2
1
c
4
u
11
+ 2u
9
+ u
8
+ 3u
7
+ u
6
3u
4
u
3
4u
2
1
c
5
, c
6
u
11
+ 8u
9
+ 23u
7
+ 28u
5
+ u
4
+ 12u
3
+ 3u
2
+ 1
c
7
, c
12
u
11
u
10
5u
9
+ 5u
8
+ 9u
7
8u
6
8u
5
+ 7u
4
+ 4u
3
3u
2
u + 1
c
8
u
11
+ 2u
9
u
8
+ 3u
7
u
6
+ 3u
4
u
3
+ 4u
2
+ 1
c
9
u
11
5u
9
2u
8
+ 4u
7
+ 9u
6
+ 5u
5
2u
4
13u
3
+ 7u
2
+ 2u + 1
c
10
, c
11
u
11
+ 8u
9
+ 23u
7
+ 28u
5
u
4
+ 12u
3
3u
2
1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
11
15y
10
+ ··· 13y 1
c
2
, c
7
, c
12
y
11
11y
10
+ ··· + 7y 1
c
3
y
11
+ 4y
10
+ ··· + 4y 1
c
4
, c
8
y
11
+ 4y
10
+ ··· 8y 1
c
5
, c
6
, c
10
c
11
y
11
+ 16y
10
+ ··· 6y 1
c
9
y
11
10y
10
+ ··· 10y 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.02184
a = 1.00000
b = 0.445195
6.47878 5.43850
u = 0.960985 + 0.510912I
a = 1.00000
b = 0.233007 + 1.358440I
1.89567 + 2.51034I 5.23089 0.60579I
u = 0.960985 0.510912I
a = 1.00000
b = 0.233007 1.358440I
1.89567 2.51034I 5.23089 + 0.60579I
u = 0.062554 + 0.872739I
a = 1.00000
b = 0.166908 + 0.916041I
0.12106 + 1.89765I 8.02738 3.63931I
u = 0.062554 0.872739I
a = 1.00000
b = 0.166908 0.916041I
0.12106 1.89765I 8.02738 + 3.63931I
u = 0.448669 + 1.127200I
a = 1.00000
b = 0.193075 + 0.390923I
1.65984 3.19570I 7.07775 + 5.40642I
u = 0.448669 1.127200I
a = 1.00000
b = 0.193075 0.390923I
1.65984 + 3.19570I 7.07775 5.40642I
u = 0.065465 + 0.570358I
a = 1.00000
b = 0.02836 1.73242I
9.80306 1.15540I 10.75281 0.76912I
u = 0.065465 0.570358I
a = 1.00000
b = 0.02836 + 1.73242I
9.80306 + 1.15540I 10.75281 + 0.76912I
u = 0.77071 + 1.27691I
a = 1.00000
b = 0.06726 1.54442I
5.09546 + 4.16451I 9.19190 5.51053I
14
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.77071 1.27691I
a = 1.00000
b = 0.06726 + 1.54442I
5.09546 4.16451I 9.19190 + 5.51053I
15
IV. I
u
4
= h−6u
11
5u
10
+ · · · + 236b 12, 65u
11
585u
10
+ · · · + 472a
5416, u
12
5u
11
+ · · · 12u + 8i
(i) Arc colorings
a
5
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
9
=
u
u
3
+ u
a
12
=
0.137712u
11
+ 1.23941u
10
+ ··· 19.0805u + 11.4746
0.0254237u
11
+ 0.0211864u
10
+ ··· + 3.16102u + 0.0508475
a
3
=
0.502119u
11
2.51907u
10
+ ··· + 13.3051u 3.74576
0.555085u
11
+ 2.74576u
10
+ ··· 8.43220u + 0.389831
a
2
=
0.502119u
11
2.51907u
10
+ ··· + 13.3051u 3.74576
0.338983u
11
+ 1.80085u
10
+ ··· 4.31356u + 0.322034
a
1
=
0.252119u
11
+ 1.76907u
10
+ ··· 15.5551u + 9.74576
0.0805085u
11
0.224576u
10
+ ··· + 7.09322u 1.33898
a
7
=
0.646186u
11
+ 3.56568u
10
+ ··· 20.8008u + 7.95763
0.00423729u
11
+ 0.0381356u
10
+ ··· + 2.38983u + 0.491525
a
11
=
0.112288u
11
+ 1.26059u
10
+ ··· 15.9195u + 11.5254
0.0254237u
11
+ 0.0211864u
10
+ ··· + 3.16102u + 0.0508475
a
6
=
1.18432u
11
5.65890u
10
+ ··· + 17.5424u + 4.11864
0.0296610u
11
0.0169492u
10
+ ··· + 0.771186u 1.44068
a
10
=
0.641949u
11
3.52754u
10
+ ··· + 23.1907u 7.46610
0.00423729u
11
0.0381356u
10
+ ··· 2.38983u 0.491525
(ii) Obstruction class = 1
(iii) Cusp Shapes =
4
59
u
11
95
59
u
10
+
440
59
u
9
21u
8
+
2474
59
u
7
4068
59
u
6
+
4884
59
u
5
5807
59
u
4
+
4512
59
u
3
4344
59
u
2
+
1638
59
u
1762
59
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
12
+ 15u
11
+ ··· + 96u + 64
c
2
, c
7
, c
12
u
12
3u
11
+ ··· 8u + 8
c
3
(u
3
+ u
2
1)
4
c
4
, c
8
u
12
5u
11
+ ··· 12u + 8
c
5
, c
6
, c
10
c
11
(u
3
u
2
+ 2u 1)
4
c
9
u
12
6u
11
+ ··· + 18u + 59
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
12
15y
11
+ ··· 18944y + 4096
c
2
, c
7
, c
12
y
12
15y
11
+ ··· 96y + 64
c
3
(y
3
y
2
+ 2y 1)
4
c
4
, c
8
y
12
+ 5y
11
+ ··· + 624y + 64
c
5
, c
6
, c
10
c
11
(y
3
+ 3y
2
+ 2y 1)
4
c
9
y
12
16y
11
+ ··· 8820y + 3481
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.044973 + 0.916855I
a = 1.22501 0.79096I
b = 0.215080 + 1.307140I
1.11345 6.98049 + 0.I
u = 0.044973 0.916855I
a = 1.22501 + 0.79096I
b = 0.215080 1.307140I
1.11345 6.98049 + 0.I
u = 0.404600 + 1.033930I
a = 1.272350 + 0.353092I
b = 0.569840
3.02413 2.82812I 13.50976 + 2.97945I
u = 0.404600 1.033930I
a = 1.272350 0.353092I
b = 0.569840
3.02413 + 2.82812I 13.50976 2.97945I
u = 0.670107 + 1.158730I
a = 0.576131 0.371997I
b = 0.215080 1.307140I
1.11345 6.98049 + 0.I
u = 0.670107 1.158730I
a = 0.576131 + 0.371997I
b = 0.215080 + 1.307140I
1.11345 6.98049 + 0.I
u = 0.076727 + 0.622517I
a = 2.13780 2.88995I
b = 0.215080 + 1.307140I
3.02413 2.82812I 13.50976 + 2.97945I
u = 0.076727 0.622517I
a = 2.13780 + 2.88995I
b = 0.215080 1.307140I
3.02413 + 2.82812I 13.50976 2.97945I
u = 0.14972 + 1.45838I
a = 0.729747 + 0.202513I
b = 0.569840
3.02413 + 2.82812I 13.50976 2.97945I
u = 0.14972 1.45838I
a = 0.729747 0.202513I
b = 0.569840
3.02413 2.82812I 13.50976 + 2.97945I
19
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.96307 + 1.10908I
a = 0.165439 + 0.223646I
b = 0.215080 + 1.307140I
3.02413 2.82812I 13.50976 + 2.97945I
u = 1.96307 1.10908I
a = 0.165439 0.223646I
b = 0.215080 1.307140I
3.02413 + 2.82812I 13.50976 2.97945I
20
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
6
+ 6u
5
+ 5u
4
14u
3
+ 26u
2
+ 144u + 121)
· (u
11
11u
10
+ ··· + 7u 1)(u
12
+ 15u
11
+ ··· + 96u + 64)
· (u
17
+ 25u
16
+ ··· 5u + 1)
c
2
(u
6
+ 2u
5
u
4
+ 2u
2
10u 11)
· (u
11
+ u
10
5u
9
5u
8
+ 9u
7
+ 8u
6
8u
5
7u
4
+ 4u
3
+ 3u
2
u 1)
· (u
12
3u
11
+ ··· 8u + 8)(u
17
+ u
16
+ ··· + u + 1)
c
3
(u
3
+ u
2
1)
6
· (u
11
+ 4u
10
+ 10u
9
+ 16u
8
+ 16u
7
+ 7u
6
3u
5
5u
4
+ 2u
2
1)
· (u
17
11u
16
+ ··· 48u + 8)
c
4
(u
6
+ 2u
5
+ 3u
4
+ 2u
3
+ 10u 1)
· (u
11
+ 2u
9
+ u
8
+ 3u
7
+ u
6
3u
4
u
3
4u
2
1)
· (u
12
5u
11
+ ··· 12u + 8)(u
17
+ 9u
15
+ ··· + 2u + 1)
c
5
, c
6
(u
3
u
2
+ 2u 1)
6
(u
11
+ 8u
9
+ 23u
7
+ 28u
5
+ u
4
+ 12u
3
+ 3u
2
+ 1)
· (u
17
+ 7u
16
+ ··· + 72u + 8)
c
7
, c
12
(u
6
+ 2u
5
u
4
+ 2u
2
10u 11)
· (u
11
u
10
5u
9
+ 5u
8
+ 9u
7
8u
6
8u
5
+ 7u
4
+ 4u
3
3u
2
u + 1)
· (u
12
3u
11
+ ··· 8u + 8)(u
17
+ u
16
+ ··· + u + 1)
c
8
(u
6
+ 2u
5
+ 3u
4
+ 2u
3
+ 10u 1)
· (u
11
+ 2u
9
u
8
+ 3u
7
u
6
+ 3u
4
u
3
+ 4u
2
+ 1)
· (u
12
5u
11
+ ··· 12u + 8)(u
17
+ 9u
15
+ ··· + 2u + 1)
c
9
(u
6
+ 5u
5
+ 4u
4
11u
3
14u
2
8)
· (u
11
5u
9
2u
8
+ 4u
7
+ 9u
6
+ 5u
5
2u
4
13u
3
+ 7u
2
+ 2u + 1)
· (u
12
6u
11
+ ··· + 18u + 59)(u
17
20u
15
+ ··· + 194u + 259)
c
10
, c
11
(u
3
u
2
+ 2u 1)
6
(u
11
+ 8u
9
+ 23u
7
+ 28u
5
u
4
+ 12u
3
3u
2
1)
· (u
17
+ 7u
16
+ ··· + 72u + 8)
21
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
6
26y
5
+ 245y
4
1422y
3
+ 5918y
2
14444y + 14641)
· (y
11
15y
10
+ ··· 13y 1)(y
12
15y
11
+ ··· 18944y + 4096)
· (y
17
65y
16
+ ··· + 87y 1)
c
2
, c
7
, c
12
(y
6
6y
5
+ 5y
4
+ 14y
3
+ 26y
2
144y + 121)
· (y
11
11y
10
+ ··· + 7y 1)(y
12
15y
11
+ ··· 96y + 64)
· (y
17
25y
16
+ ··· 5y 1)
c
3
((y
3
y
2
+ 2y 1)
6
)(y
11
+ 4y
10
+ ··· + 4y 1)
· (y
17
+ 3y
16
+ ··· + 672y 64)
c
4
, c
8
(y
6
+ 2y
5
+ ··· 100y + 1)(y
11
+ 4y
10
+ ··· 8y 1)
· (y
12
+ 5y
11
+ ··· + 624y + 64)(y
17
+ 18y
16
+ ··· + 20y 1)
c
5
, c
6
, c
10
c
11
((y
3
+ 3y
2
+ 2y 1)
6
)(y
11
+ 16y
10
+ ··· 6y 1)
· (y
17
+ 19y
16
+ ··· + 288y 64)
c
9
(y
6
17y
5
+ 98y
4
249y
3
+ 132y
2
+ 224y + 64)
· (y
11
10y
10
+ ··· 10y 1)(y
12
16y
11
+ ··· 8820y + 3481)
· (y
17
40y
16
+ ··· 96526y 67081)
22