12n
0645
(K12n
0645
)
A knot diagram
1
Linearized knot diagam
3 8 10 8 12 11 2 4 1 7 6 4
Solving Sequence
2,7
8
3,10
4 5 11 1 6 9 12
c
7
c
2
c
3
c
4
c
10
c
1
c
6
c
9
c
12
c
5
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h8.90809 × 10
47
u
45
+ 8.84240 × 10
47
u
44
+ ··· + 2.05702 × 10
48
b 2.45319 × 10
49
,
6.59670 × 10
48
u
45
+ 1.83893 × 10
49
u
44
+ ··· + 6.37677 × 10
49
a 1.07007 × 10
51
,
u
46
10u
44
+ ··· + 11u + 31i
I
u
2
= h−2u
10
+ u
9
+ 6u
8
4u
7
16u
6
+ 6u
5
+ 19u
4
5u
3
15u
2
+ b + u + 4,
u
9
2u
8
2u
7
+ 6u
6
+ 4u
5
13u
4
3u
3
+ 12u
2
+ a + u 6,
u
11
u
10
3u
9
+ 4u
8
+ 7u
7
8u
6
8u
5
+ 9u
4
+ 5u
3
5u
2
u + 1i
* 2 irreducible components of dim
C
= 0, with total 57 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h8.91 × 10
47
u
45
+ 8.84 × 10
47
u
44
+ · · · + 2.06 × 10
48
b 2.45 ×
10
49
, 6.60 × 10
48
u
45
+ 1.84 × 10
49
u
44
+ · · · + 6.38 × 10
49
a 1.07 ×
10
51
, u
46
10u
44
+ · · · + 11u + 31i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
3
=
u
u
3
+ u
a
10
=
0.103449u
45
0.288379u
44
+ ··· 0.284809u + 16.7807
0.433057u
45
0.429864u
44
+ ··· + 15.8856u + 11.9259
a
4
=
0.141416u
45
+ 0.395932u
44
+ ··· 9.32244u 28.9599
0.366395u
45
+ 0.483053u
44
+ ··· 16.9943u 16.7074
a
5
=
0.284534u
45
+ 0.603944u
44
+ ··· 26.3454u 33.3933
0.611972u
45
+ 0.566589u
44
+ ··· 32.4869u 23.1557
a
11
=
0.329608u
45
0.718243u
44
+ ··· + 15.6007u + 28.7066
0.433057u
45
0.429864u
44
+ ··· + 15.8856u + 11.9259
a
1
=
u
3
u
5
u
3
+ u
a
6
=
1.30358u
45
+ 0.927847u
44
+ ··· 65.6458u 32.8545
0.264798u
45
+ 0.224989u
44
+ ··· 12.0873u 7.10220
a
9
=
0.365076u
45
0.0975018u
44
+ ··· 13.4315u + 10.4704
0.146690u
45
0.269810u
44
+ ··· + 2.05043u + 6.63521
a
12
=
1.08634u
45
+ 0.507925u
44
+ ··· 43.7616u 12.5340
1.02109u
45
+ 0.771426u
44
+ ··· 46.8793u 30.5007
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.400585u
45
0.275909u
44
+ ··· 48.1051u 42.5676
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
46
+ 20u
45
+ ··· + 14009u + 961
c
2
, c
7
u
46
10u
44
+ ··· 11u + 31
c
3
u
46
+ u
45
+ ··· + 2u 1
c
4
, c
8
u
46
3u
45
+ ··· 2160u 1621
c
5
, c
6
, c
10
c
11
u
46
u
45
+ ··· 10u 1
c
9
u
46
24u
44
+ ··· + 183u + 43
c
12
u
46
+ 7u
45
+ ··· 3420u 343
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
46
+ 32y
45
+ ··· + 2013751y + 923521
c
2
, c
7
y
46
20y
45
+ ··· 14009y + 961
c
3
y
46
+ 7y
45
+ ··· 42y + 1
c
4
, c
8
y
46
41y
45
+ ··· 68296334y + 2627641
c
5
, c
6
, c
10
c
11
y
46
+ 51y
45
+ ··· 60y + 1
c
9
y
46
48y
45
+ ··· 93001y + 1849
c
12
y
46
51y
45
+ ··· 4953020y + 117649
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.777171 + 0.612835I
a = 1.016300 0.099619I
b = 0.331933 + 0.632697I
0.45486 2.22136I 5.56372 + 4.55995I
u = 0.777171 0.612835I
a = 1.016300 + 0.099619I
b = 0.331933 0.632697I
0.45486 + 2.22136I 5.56372 4.55995I
u = 0.796260 + 0.581104I
a = 0.123978 0.214987I
b = 0.37211 + 1.50267I
0.132688 0.463216I 4.30646 2.07954I
u = 0.796260 0.581104I
a = 0.123978 + 0.214987I
b = 0.37211 1.50267I
0.132688 + 0.463216I 4.30646 + 2.07954I
u = 0.891195 + 0.365209I
a = 2.81275 + 0.31631I
b = 0.031259 + 1.382470I
1.86336 + 0.58097I 3.38443 + 0.69263I
u = 0.891195 0.365209I
a = 2.81275 0.31631I
b = 0.031259 1.382470I
1.86336 0.58097I 3.38443 0.69263I
u = 0.758477 + 0.770111I
a = 1.31515 0.65871I
b = 0.712311 0.622242I
6.85172 1.46852I 7.65009 + 3.31921I
u = 0.758477 0.770111I
a = 1.31515 + 0.65871I
b = 0.712311 + 0.622242I
6.85172 + 1.46852I 7.65009 3.31921I
u = 0.913123 + 0.579538I
a = 1.81688 + 0.86698I
b = 0.25012 + 1.59325I
0.51224 + 5.07727I 3.91334 4.47739I
u = 0.913123 0.579538I
a = 1.81688 0.86698I
b = 0.25012 1.59325I
0.51224 5.07727I 3.91334 + 4.47739I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.913895 + 0.666325I
a = 0.649069 + 0.227447I
b = 0.338025 0.053987I
1.08476 2.74841I 8.58326 + 2.30981I
u = 0.913895 0.666325I
a = 0.649069 0.227447I
b = 0.338025 + 0.053987I
1.08476 + 2.74841I 8.58326 2.30981I
u = 0.854412 + 0.074876I
a = 0.93971 1.27956I
b = 0.02815 1.72557I
13.22450 0.32397I 0.99400 2.11493I
u = 0.854412 0.074876I
a = 0.93971 + 1.27956I
b = 0.02815 + 1.72557I
13.22450 + 0.32397I 0.99400 + 2.11493I
u = 0.812024 + 0.266747I
a = 1.03314 1.16176I
b = 0.222226 + 1.219740I
1.58775 3.40530I 2.42508 + 8.01994I
u = 0.812024 0.266747I
a = 1.03314 + 1.16176I
b = 0.222226 1.219740I
1.58775 + 3.40530I 2.42508 8.01994I
u = 0.612129 + 0.975994I
a = 0.737727 + 0.580195I
b = 0.741768 0.448363I
7.36473 3.39333I 8.53065 + 3.23087I
u = 0.612129 0.975994I
a = 0.737727 0.580195I
b = 0.741768 + 0.448363I
7.36473 + 3.39333I 8.53065 3.23087I
u = 0.066989 + 0.834868I
a = 0.507773 + 0.449914I
b = 0.081495 1.363900I
3.81447 + 2.16547I 3.03202 3.16202I
u = 0.066989 0.834868I
a = 0.507773 0.449914I
b = 0.081495 + 1.363900I
3.81447 2.16547I 3.03202 + 3.16202I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.835340
a = 1.52762
b = 0.699978
2.08624 3.59250
u = 0.957184 + 0.700082I
a = 0.757512 + 0.366942I
b = 0.873917 0.486869I
6.22467 4.09819I 6.87161 + 2.72251I
u = 0.957184 0.700082I
a = 0.757512 0.366942I
b = 0.873917 + 0.486869I
6.22467 + 4.09819I 6.87161 2.72251I
u = 1.077260 + 0.505176I
a = 1.068580 + 0.594060I
b = 0.485546 + 0.365826I
1.04957 + 4.66742I 5.56090 9.70253I
u = 1.077260 0.505176I
a = 1.068580 0.594060I
b = 0.485546 0.365826I
1.04957 4.66742I 5.56090 + 9.70253I
u = 1.152890 + 0.432401I
a = 0.0608762 0.0298599I
b = 0.057001 + 0.488154I
1.61761 2.37559I 0.879006 + 0.401607I
u = 1.152890 0.432401I
a = 0.0608762 + 0.0298599I
b = 0.057001 0.488154I
1.61761 + 2.37559I 0.879006 0.401607I
u = 0.708951 + 0.204573I
a = 0.837428 0.839652I
b = 0.231335 0.896256I
3.73770 + 0.61521I 1.20649 + 1.42032I
u = 0.708951 0.204573I
a = 0.837428 + 0.839652I
b = 0.231335 + 0.896256I
3.73770 0.61521I 1.20649 1.42032I
u = 0.474202 + 1.186570I
a = 0.207177 0.587661I
b = 0.25018 + 1.48994I
1.08764 + 6.97219I 4.72387 4.64542I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.474202 1.186570I
a = 0.207177 + 0.587661I
b = 0.25018 1.48994I
1.08764 6.97219I 4.72387 + 4.64542I
u = 0.713380
a = 3.04004
b = 0.136531
2.80045 4.62300
u = 1.195490 + 0.523779I
a = 1.69838 0.65171I
b = 0.16723 1.46549I
7.05077 7.05212I 1.18080 + 6.79998I
u = 1.195490 0.523779I
a = 1.69838 + 0.65171I
b = 0.16723 + 1.46549I
7.05077 + 7.05212I 1.18080 6.79998I
u = 1.097350 + 0.743718I
a = 1.174780 0.336310I
b = 0.817170 0.613699I
5.83564 + 9.64943I 6.00000 7.00268I
u = 1.097350 0.743718I
a = 1.174780 + 0.336310I
b = 0.817170 + 0.613699I
5.83564 9.64943I 6.00000 + 7.00268I
u = 0.378903 + 0.518753I
a = 1.067570 0.111522I
b = 0.441328 + 0.176398I
0.963425 0.418051I 9.96672 + 3.30631I
u = 0.378903 0.518753I
a = 1.067570 + 0.111522I
b = 0.441328 0.176398I
0.963425 + 0.418051I 9.96672 3.30631I
u = 1.130590 + 0.839549I
a = 0.972367 + 0.073701I
b = 0.09034 1.57331I
7.92848 + 3.74029I 0
u = 1.130590 0.839549I
a = 0.972367 0.073701I
b = 0.09034 + 1.57331I
7.92848 3.74029I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.22337 + 0.74620I
a = 1.47635 + 0.22540I
b = 0.28946 + 1.57516I
1.32243 13.76490I 0
u = 1.22337 0.74620I
a = 1.47635 0.22540I
b = 0.28946 1.57516I
1.32243 + 13.76490I 0
u = 1.12014 + 0.96904I
a = 0.842997 0.382179I
b = 0.060969 + 1.402580I
5.91695 + 3.87147I 0
u = 1.12014 0.96904I
a = 0.842997 + 0.382179I
b = 0.060969 1.402580I
5.91695 3.87147I 0
u = 1.46824 + 0.34467I
a = 0.350849 0.635636I
b = 0.05218 1.50558I
8.25938 + 2.77632I 0
u = 1.46824 0.34467I
a = 0.350849 + 0.635636I
b = 0.05218 + 1.50558I
8.25938 2.77632I 0
9
II.
I
u
2
= h−2u
10
+ u
9
+ · · · + b + 4, u
9
2u
8
+ · · · + a 6, u
11
u
10
+ · · · u + 1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
3
=
u
u
3
+ u
a
10
=
u
9
+ 2u
8
+ 2u
7
6u
6
4u
5
+ 13u
4
+ 3u
3
12u
2
u + 6
2u
10
u
9
6u
8
+ 4u
7
+ 16u
6
6u
5
19u
4
+ 5u
3
+ 15u
2
u 4
a
4
=
u
10
+ 4u
9
11u
7
+ 3u
6
+ 24u
5
9u
4
22u
3
+ 10u
2
+ 9u 3
u
10
+ u
9
5u
8
u
7
+ 14u
6
+ 3u
5
20u
4
2u
3
+ 16u
2
4
a
5
=
3u
9
3u
8
7u
7
+ 10u
6
+ 16u
5
17u
4
13u
3
+ 15u
2
+ 5u 4
u
10
+ u
9
5u
8
u
7
+ 14u
6
+ 3u
5
20u
4
u
3
+ 16u
2
u 4
a
11
=
2u
10
2u
9
4u
8
+ 6u
7
+ 10u
6
10u
5
6u
4
+ 8u
3
+ 3u
2
2u + 2
2u
10
u
9
6u
8
+ 4u
7
+ 16u
6
6u
5
19u
4
+ 5u
3
+ 15u
2
u 4
a
1
=
u
3
u
5
u
3
+ u
a
6
=
7u
10
5u
9
+ ··· 7u 8
2u
9
+ 2u
8
+ 5u
7
7u
6
11u
5
+ 12u
4
+ 10u
3
11u
2
4u + 2
a
9
=
u
9
+ 2u
8
+ 2u
7
6u
6
4u
5
+ 13u
4
+ 3u
3
11u
2
u + 6
2u
10
u
9
6u
8
+ 4u
7
+ 16u
6
6u
5
18u
4
+ 5u
3
+ 14u
2
u 3
a
12
=
2u
9
+ u
8
+ 7u
7
6u
6
16u
5
+ 10u
4
+ 19u
3
12u
2
9u + 4
2u
10
+ 2u
9
+ ··· + 3u + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 8u
10
13u
9
14u
8
+ 40u
7
+ 26u
6
77u
5
2u
4
+ 70u
3
13u
2
28u + 15
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
11
7u
10
+ ··· + 11u 1
c
2
u
11
+ u
10
3u
9
4u
8
+ 7u
7
+ 8u
6
8u
5
9u
4
+ 5u
3
+ 5u
2
u 1
c
3
u
11
+ 4u
9
+ u
8
+ 3u
7
u
5
3u
4
u
3
2u
2
1
c
4
u
11
+ 2u
9
u
8
+ 3u
7
u
6
+ 3u
4
u
3
+ 4u
2
+ 1
c
5
, c
6
u
11
+ 8u
9
+ 23u
7
+ 28u
5
+ u
4
+ 12u
3
+ 3u
2
+ 1
c
7
u
11
u
10
3u
9
+ 4u
8
+ 7u
7
8u
6
8u
5
+ 9u
4
+ 5u
3
5u
2
u + 1
c
8
u
11
+ 2u
9
+ u
8
+ 3u
7
+ u
6
3u
4
u
3
4u
2
1
c
9
u
11
u
10
5u
9
+ 5u
8
+ 9u
7
8u
6
8u
5
+ 7u
4
+ 4u
3
3u
2
u + 1
c
10
, c
11
u
11
+ 8u
9
+ 23u
7
+ 28u
5
u
4
+ 12u
3
3u
2
1
c
12
u
11
+ 3u
9
+ 8u
8
+ 3u
7
+ 10u
6
+ 12u
5
+ u
4
+ 9u
3
+ 5u
2
4u + 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
11
+ 13y
10
+ ··· + 15y 1
c
2
, c
7
y
11
7y
10
+ ··· + 11y 1
c
3
y
11
+ 8y
10
+ ··· 4y 1
c
4
, c
8
y
11
+ 4y
10
+ ··· 8y 1
c
5
, c
6
, c
10
c
11
y
11
+ 16y
10
+ ··· 6y 1
c
9
y
11
11y
10
+ ··· + 7y 1
c
12
y
11
+ 6y
10
+ ··· + 6y 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.926350 + 0.275446I
a = 0.604065 1.072750I
b = 0.02836 1.73242I
13.09290 + 1.15540I 1.12930 6.75991I
u = 0.926350 0.275446I
a = 0.604065 + 1.072750I
b = 0.02836 + 1.73242I
13.09290 1.15540I 1.12930 + 6.75991I
u = 0.931716 + 0.451527I
a = 0.012829 + 0.293025I
b = 0.166908 + 0.916041I
3.41093 1.89765I 0.48715 + 3.11270I
u = 0.931716 0.451527I
a = 0.012829 0.293025I
b = 0.166908 0.916041I
3.41093 + 1.89765I 0.48715 3.11270I
u = 1.092600 + 0.709214I
a = 0.636248 0.082249I
b = 0.193075 + 0.390923I
1.63003 + 3.19570I 1.52279 9.85073I
u = 1.092600 0.709214I
a = 0.636248 + 0.082249I
b = 0.193075 0.390923I
1.63003 3.19570I 1.52279 + 9.85073I
u = 0.605049 + 0.142384I
a = 2.74610 0.77777I
b = 0.233007 + 1.358440I
1.39419 2.51034I 3.76451 + 0.24190I
u = 0.605049 0.142384I
a = 2.74610 + 0.77777I
b = 0.233007 1.358440I
1.39419 + 2.51034I 3.76451 0.24190I
u = 0.612040
a = 3.26852
b = 0.445195
3.18891 17.5710
u = 1.28821 + 0.91096I
a = 0.835352 + 0.045091I
b = 0.06726 1.54442I
8.38532 4.16451I 4.14359 + 8.28004I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.28821 0.91096I
a = 0.835352 0.045091I
b = 0.06726 + 1.54442I
8.38532 + 4.16451I 4.14359 8.28004I
14
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
11
7u
10
+ ··· + 11u 1)(u
46
+ 20u
45
+ ··· + 14009u + 961)
c
2
(u
11
+ u
10
3u
9
4u
8
+ 7u
7
+ 8u
6
8u
5
9u
4
+ 5u
3
+ 5u
2
u 1)
· (u
46
10u
44
+ ··· 11u + 31)
c
3
(u
11
+ 4u
9
+ ··· 2u
2
1)(u
46
+ u
45
+ ··· + 2u 1)
c
4
(u
11
+ 2u
9
u
8
+ 3u
7
u
6
+ 3u
4
u
3
+ 4u
2
+ 1)
· (u
46
3u
45
+ ··· 2160u 1621)
c
5
, c
6
(u
11
+ 8u
9
+ 23u
7
+ 28u
5
+ u
4
+ 12u
3
+ 3u
2
+ 1)
· (u
46
u
45
+ ··· 10u 1)
c
7
(u
11
u
10
3u
9
+ 4u
8
+ 7u
7
8u
6
8u
5
+ 9u
4
+ 5u
3
5u
2
u + 1)
· (u
46
10u
44
+ ··· 11u + 31)
c
8
(u
11
+ 2u
9
+ u
8
+ 3u
7
+ u
6
3u
4
u
3
4u
2
1)
· (u
46
3u
45
+ ··· 2160u 1621)
c
9
(u
11
u
10
5u
9
+ 5u
8
+ 9u
7
8u
6
8u
5
+ 7u
4
+ 4u
3
3u
2
u + 1)
· (u
46
24u
44
+ ··· + 183u + 43)
c
10
, c
11
(u
11
+ 8u
9
+ 23u
7
+ 28u
5
u
4
+ 12u
3
3u
2
1)
· (u
46
u
45
+ ··· 10u 1)
c
12
(u
11
+ 3u
9
+ 8u
8
+ 3u
7
+ 10u
6
+ 12u
5
+ u
4
+ 9u
3
+ 5u
2
4u + 1)
· (u
46
+ 7u
45
+ ··· 3420u 343)
15
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
11
+ 13y
10
+ ··· + 15y 1)
· (y
46
+ 32y
45
+ ··· + 2013751y + 923521)
c
2
, c
7
(y
11
7y
10
+ ··· + 11y 1)(y
46
20y
45
+ ··· 14009y + 961)
c
3
(y
11
+ 8y
10
+ ··· 4y 1)(y
46
+ 7y
45
+ ··· 42y + 1)
c
4
, c
8
(y
11
+ 4y
10
+ ··· 8y 1)
· (y
46
41y
45
+ ··· 68296334y + 2627641)
c
5
, c
6
, c
10
c
11
(y
11
+ 16y
10
+ ··· 6y 1)(y
46
+ 51y
45
+ ··· 60y + 1)
c
9
(y
11
11y
10
+ ··· + 7y 1)(y
46
48y
45
+ ··· 93001y + 1849)
c
12
(y
11
+ 6y
10
+ ··· + 6y 1)(y
46
51y
45
+ ··· 4953020y + 117649)
16