12n
0647
(K12n
0647
)
A knot diagram
1
Linearized knot diagam
3 8 11 9 1 10 2 6 3 6 9 5
Solving Sequence
3,9 6,10
11 4 8 2 1 5 7 12
c
9
c
10
c
3
c
8
c
2
c
1
c
5
c
7
c
12
c
4
, c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.15739 × 10
38
u
21
+ 2.59794 × 10
38
u
20
+ ··· + 5.63971 × 10
39
b + 2.94029 × 10
39
,
1.52370 × 10
39
u
21
3.15147 × 10
38
u
20
+ ··· + 5.63971 × 10
39
a + 6.37897 × 10
40
, u
22
u
21
+ ··· 7u + 1i
I
u
2
= h2u
10
2u
9
+ 3u
8
5u
7
u
6
3u
5
5u
4
+ 8u
3
6u
2
+ b + 8u 1,
u
10
u
9
u
7
u
6
+ u
5
2u
4
+ 3u
3
+ a u + 2, u
11
u
8
3u
7
u
6
3u
5
+ 2u
4
+ 2u
3
+ 3u 1i
* 2 irreducible components of dim
C
= 0, with total 33 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−1.16×10
38
u
21
+2.60×10
38
u
20
+· · ·+5.64×10
39
b+2.94×10
39
, 1.52×
10
39
u
21
3.15×10
38
u
20
+· · ·+5.64×10
39
a+6.38×10
40
, u
22
u
21
+· · ·7u+1i
(i) Arc colorings
a
3
=
0
u
a
9
=
1
0
a
6
=
0.270174u
21
+ 0.0558800u
20
+ ··· + 42.5373u 11.3108
0.0205221u
21
0.0460651u
20
+ ··· + 6.82322u 0.521354
a
10
=
1
u
2
a
11
=
1.35047u
21
+ 1.35347u
20
+ ··· 117.421u + 7.69784
0.209846u
21
+ 0.147595u
20
+ ··· 6.54594u + 0.116749
a
4
=
2.15834u
21
2.04296u
20
+ ··· + 162.698u 7.98991
0.318765u
21
0.225148u
20
+ ··· + 8.95792u 0.0968802
a
8
=
1.18213u
21
1.17546u
20
+ ··· + 97.8267u 4.07571
0.214154u
21
0.137619u
20
+ ··· + 5.41053u 0.123423
a
2
=
1.66406u
21
+ 1.47272u
20
+ ··· 96.5661u 0.246377
0.256597u
21
+ 0.176966u
20
+ ··· 3.09765u + 0.0237528
a
1
=
1.66406u
21
+ 1.47272u
20
+ ··· 96.5661u 0.246377
0.227217u
21
+ 0.158707u
20
+ ··· 3.42237u 0.167580
a
5
=
1.83958u
21
1.81781u
20
+ ··· + 153.740u 7.89303
0.318765u
21
0.225148u
20
+ ··· + 8.95792u 0.0968802
a
7
=
0.297455u
21
+ 0.112963u
20
+ ··· + 34.4842u 10.5752
0.0338753u
21
0.0534463u
20
+ ··· + 7.05911u 0.551156
a
12
=
1.14063u
21
1.20587u
20
+ ··· + 110.875u 7.58109
0.209846u
21
0.147595u
20
+ ··· + 6.54594u 0.116749
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.01325u
21
+ 1.04755u
20
+ ··· 80.2731u 9.63814
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
22
+ 9u
21
+ ··· + 637u + 49
c
2
, c
7
u
22
+ u
21
+ ··· 35u 7
c
3
, c
5
, c
12
u
22
+ 2u
21
+ ··· u + 1
c
4
u
22
+ 2u
21
+ ··· 5u + 1
c
6
, c
10
u
22
+ 2u
21
+ ··· 66u 19
c
8
u
22
3u
21
+ ··· + 85u + 23
c
9
u
22
u
21
+ ··· 7u + 1
c
11
u
22
6u
21
+ ··· 2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
22
+ 19y
21
+ ··· 134113y + 2401
c
2
, c
7
y
22
9y
21
+ ··· 637y + 49
c
3
, c
5
, c
12
y
22
20y
21
+ ··· 85y + 1
c
4
y
22
40y
21
+ ··· 25y + 1
c
6
, c
10
y
22
+ 24y
21
+ ··· 4660y + 361
c
8
y
22
+ 29y
21
+ ··· 9065y + 529
c
9
y
22
+ 39y
21
+ ··· + 117y + 1
c
11
y
22
52y
21
+ ··· 36y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.922193 + 0.451969I
a = 0.140167 + 0.079897I
b = 1.135600 + 0.625368I
3.68279 0.94185I 15.4912 + 3.1680I
u = 0.922193 0.451969I
a = 0.140167 0.079897I
b = 1.135600 0.625368I
3.68279 + 0.94185I 15.4912 3.1680I
u = 0.918387 + 0.590013I
a = 0.823390 + 0.318747I
b = 0.795349 + 0.331962I
0.88400 1.53763I 11.84759 + 1.75542I
u = 0.918387 0.590013I
a = 0.823390 0.318747I
b = 0.795349 0.331962I
0.88400 + 1.53763I 11.84759 1.75542I
u = 0.015535 + 1.113510I
a = 0.50175 + 1.35452I
b = 0.093079 0.699578I
1.24345 2.09162I 12.32634 + 3.76479I
u = 0.015535 1.113510I
a = 0.50175 1.35452I
b = 0.093079 + 0.699578I
1.24345 + 2.09162I 12.32634 3.76479I
u = 1.14626
a = 0.626888
b = 0.600846
7.73402 2.06680
u = 0.40719 + 1.44071I
a = 0.364074 0.930543I
b = 0.38730 + 1.37848I
1.70191 + 1.70598I 14.8255 1.4132I
u = 0.40719 1.44071I
a = 0.364074 + 0.930543I
b = 0.38730 1.37848I
1.70191 1.70598I 14.8255 + 1.4132I
u = 0.317847 + 0.269046I
a = 2.62385 0.79046I
b = 0.085195 + 0.903480I
1.56638 + 2.34323I 10.66731 5.68174I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.317847 0.269046I
a = 2.62385 + 0.79046I
b = 0.085195 0.903480I
1.56638 2.34323I 10.66731 + 5.68174I
u = 0.403521
a = 2.31915
b = 1.67477
13.6204 17.7340
u = 0.352636
a = 0.655926
b = 0.220728
0.550682 18.1690
u = 1.87169
a = 0.326736
b = 0.803005
14.8041 12.3900
u = 0.0195375 + 0.1177480I
a = 10.81320 + 5.82406I
b = 0.225273 + 0.760617I
3.29787 + 5.70936I 15.2173 7.8009I
u = 0.0195375 0.1177480I
a = 10.81320 5.82406I
b = 0.225273 0.760617I
3.29787 5.70936I 15.2173 + 7.8009I
u = 0.78622 + 2.42733I
a = 0.107388 0.674968I
b = 0.95174 + 2.08123I
5.54115 10.77480I 0
u = 0.78622 2.42733I
a = 0.107388 + 0.674968I
b = 0.95174 2.08123I
5.54115 + 10.77480I 0
u = 0.24073 + 2.68361I
a = 0.036423 0.623368I
b = 0.27638 + 2.41167I
8.25134 + 2.56104I 0
u = 0.24073 2.68361I
a = 0.036423 + 0.623368I
b = 0.27638 2.41167I
8.25134 2.56104I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.44105 + 2.79932I
a = 0.058592 + 0.603776I
b = 0.77704 2.39189I
11.22440 + 4.41241I 0
u = 0.44105 2.79932I
a = 0.058592 0.603776I
b = 0.77704 + 2.39189I
11.22440 4.41241I 0
7
II. I
u
2
= h2u
10
2u
9
+ · · · + b 1, u
10
u
9
u
7
u
6
+ u
5
2u
4
+ 3u
3
+ a
u + 2, u
11
u
8
3u
7
u
6
3u
5
+ 2u
4
+ 2u
3
+ 3u 1i
(i) Arc colorings
a
3
=
0
u
a
9
=
1
0
a
6
=
u
10
+ u
9
+ u
7
+ u
6
u
5
+ 2u
4
3u
3
+ u 2
2u
10
+ 2u
9
3u
8
+ 5u
7
+ u
6
+ 3u
5
+ 5u
4
8u
3
+ 6u
2
8u + 1
a
10
=
1
u
2
a
11
=
2u
10
u
9
+ u
8
3u
7
3u
6
2u
5
5u
4
+ 5u
3
u
2
+ 2u + 2
u
2
+ 1
a
4
=
u
10
2u
9
+ 3u
8
4u
7
+ 2u
6
2u
5
2u
4
+ 6u
3
8u
2
+ 8u 4
2u
10
3u
9
+ 3u
8
6u
7
+ u
6
u
5
3u
4
+ 11u
3
7u
2
+ 9u 3
a
8
=
2u
10
+ 2u
9
2u
8
+ 4u
7
+ u
6
+ u
5
+ 5u
4
7u
3
+ 5u
2
4u
2u
10
+ 2u
9
3u
8
+ 5u
7
+ u
6
+ 3u
5
+ 5u
4
8u
3
+ 5u
2
8u + 1
a
2
=
u
10
2u
9
+ 2u
8
3u
7
+ u
6
2u
4
+ 7u
3
5u
2
+ 5u 1
2u
10
+ 3u
9
3u
8
+ 5u
7
u
6
+ u
5
+ 4u
4
10u
3
+ 8u
2
6u + 2
a
1
=
u
10
2u
9
+ 2u
8
3u
7
+ u
6
2u
4
+ 7u
3
5u
2
+ 5u 1
4u
10
+ 5u
9
5u
8
+ 10u
7
+ 2u
5
+ 7u
4
19u
3
+ 12u
2
13u + 4
a
5
=
u
10
+ u
9
+ 2u
7
+ u
6
u
5
+ u
4
5u
3
u
2
u 1
2u
10
3u
9
+ 3u
8
6u
7
+ u
6
u
5
3u
4
+ 11u
3
7u
2
+ 9u 3
a
7
=
u
10
u
9
+ 2u
8
3u
7
2u
5
3u
4
+ 4u
3
5u
2
+ 5u 2
1
a
12
=
2u
10
u
9
+ u
8
3u
7
3u
6
2u
5
5u
4
+ 5u
3
2u
2
+ 2u + 1
u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 18u
10
18u
9
+ 22u
8
45u
7
8u
6
17u
5
37u
4
+ 76u
3
49u
2
+ 62u 28
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
11
12u
10
+ ··· + 19u 1
c
2
u
11
6u
9
+ u
8
+ 14u
7
4u
6
17u
5
+ 6u
4
+ 11u
3
5u
2
3u + 1
c
3
, c
5
u
11
u
10
7u
9
+ 6u
8
+ 18u
7
12u
6
20u
5
+ 8u
4
+ 7u
3
+ u
2
+ u 1
c
4
u
11
+ u
10
+ ··· + 7u 1
c
6
u
11
+ u
10
u
9
+ 2u
8
2u
6
+ 3u
5
3u
4
+ u
2
2u + 1
c
7
u
11
6u
9
u
8
+ 14u
7
+ 4u
6
17u
5
6u
4
+ 11u
3
+ 5u
2
3u 1
c
8
u
11
+ 2u
10
+ u
9
3u
7
3u
6
2u
5
+ 2u
3
+ u
2
+ u 1
c
9
u
11
u
8
3u
7
u
6
3u
5
+ 2u
4
+ 2u
3
+ 3u 1
c
10
u
11
u
10
u
9
2u
8
+ 2u
6
+ 3u
5
+ 3u
4
u
2
2u 1
c
11
u
11
+ 11u
10
+ ··· + 6u + 1
c
12
u
11
+ u
10
7u
9
6u
8
+ 18u
7
+ 12u
6
20u
5
8u
4
+ 7u
3
u
2
+ u + 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
11
16y
10
+ ··· + 155y 1
c
2
, c
7
y
11
12y
10
+ ··· + 19y 1
c
3
, c
5
, c
12
y
11
15y
10
+ ··· + 3y 1
c
4
y
11
31y
10
+ ··· + 15y 1
c
6
, c
10
y
11
3y
10
3y
9
+ 6y
8
+ 8y
7
+ 2y
6
5y
5
9y
4
2y
3
+ 5y
2
+ 2y 1
c
8
y
11
2y
10
5y
9
+ 2y
8
+ 9y
7
+ 5y
6
2y
5
8y
4
6y
3
+ 3y
2
+ 3y 1
c
9
y
11
6y
9
7y
8
+ 11y
7
+ 27y
6
+ y
5
36y
4
16y
3
+ 16y
2
+ 9y 1
c
11
y
11
23y
10
+ ··· 10y 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.946698
a = 1.31867
b = 0.570624
10.8918 14.2030
u = 0.107517 + 0.921326I
a = 0.41829 + 1.75925I
b = 0.627508 0.776878I
1.39916 + 0.85773I 12.76968 + 1.45970I
u = 0.107517 0.921326I
a = 0.41829 1.75925I
b = 0.627508 + 0.776878I
1.39916 0.85773I 12.76968 1.45970I
u = 1.13392
a = 0.477082
b = 0.739267
8.01807 30.7780
u = 1.14734
a = 0.896870
b = 1.75156
12.5057 9.97480
u = 0.206612 + 1.130010I
a = 0.53803 1.36462I
b = 0.270708 + 1.018240I
2.65235 + 1.78346I 4.71612 3.09744I
u = 0.206612 1.130010I
a = 0.53803 + 1.36462I
b = 0.270708 1.018240I
2.65235 1.78346I 4.71612 + 3.09744I
u = 0.562339 + 1.094490I
a = 1.066280 + 0.765572I
b = 0.113141 1.003800I
2.63212 4.42190I 12.78415 + 2.93693I
u = 0.562339 1.094490I
a = 1.066280 0.765572I
b = 0.113141 + 1.003800I
2.63212 + 4.42190I 12.78415 2.93693I
u = 1.52035
a = 0.0829538
b = 1.10046
15.4881 24.9010
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.310641
a = 1.76236
b = 1.08864
2.97640 11.6020
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
11
12u
10
+ ··· + 19u 1)(u
22
+ 9u
21
+ ··· + 637u + 49)
c
2
(u
11
6u
9
+ u
8
+ 14u
7
4u
6
17u
5
+ 6u
4
+ 11u
3
5u
2
3u + 1)
· (u
22
+ u
21
+ ··· 35u 7)
c
3
, c
5
(u
11
u
10
7u
9
+ 6u
8
+ 18u
7
12u
6
20u
5
+ 8u
4
+ 7u
3
+ u
2
+ u 1)
· (u
22
+ 2u
21
+ ··· u + 1)
c
4
(u
11
+ u
10
+ ··· + 7u 1)(u
22
+ 2u
21
+ ··· 5u + 1)
c
6
(u
11
+ u
10
u
9
+ 2u
8
2u
6
+ 3u
5
3u
4
+ u
2
2u + 1)
· (u
22
+ 2u
21
+ ··· 66u 19)
c
7
(u
11
6u
9
u
8
+ 14u
7
+ 4u
6
17u
5
6u
4
+ 11u
3
+ 5u
2
3u 1)
· (u
22
+ u
21
+ ··· 35u 7)
c
8
(u
11
+ 2u
10
+ u
9
3u
7
3u
6
2u
5
+ 2u
3
+ u
2
+ u 1)
· (u
22
3u
21
+ ··· + 85u + 23)
c
9
(u
11
u
8
+ ··· + 3u 1)(u
22
u
21
+ ··· 7u + 1)
c
10
(u
11
u
10
u
9
2u
8
+ 2u
6
+ 3u
5
+ 3u
4
u
2
2u 1)
· (u
22
+ 2u
21
+ ··· 66u 19)
c
11
(u
11
+ 11u
10
+ ··· + 6u + 1)(u
22
6u
21
+ ··· 2u + 1)
c
12
(u
11
+ u
10
7u
9
6u
8
+ 18u
7
+ 12u
6
20u
5
8u
4
+ 7u
3
u
2
+ u + 1)
· (u
22
+ 2u
21
+ ··· u + 1)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
11
16y
10
+ ··· + 155y 1)(y
22
+ 19y
21
+ ··· 134113y + 2401)
c
2
, c
7
(y
11
12y
10
+ ··· + 19y 1)(y
22
9y
21
+ ··· 637y + 49)
c
3
, c
5
, c
12
(y
11
15y
10
+ ··· + 3y 1)(y
22
20y
21
+ ··· 85y + 1)
c
4
(y
11
31y
10
+ ··· + 15y 1)(y
22
40y
21
+ ··· 25y + 1)
c
6
, c
10
(y
11
3y
10
3y
9
+ 6y
8
+ 8y
7
+ 2y
6
5y
5
9y
4
2y
3
+ 5y
2
+ 2y 1)
· (y
22
+ 24y
21
+ ··· 4660y + 361)
c
8
(y
11
2y
10
5y
9
+ 2y
8
+ 9y
7
+ 5y
6
2y
5
8y
4
6y
3
+ 3y
2
+ 3y 1)
· (y
22
+ 29y
21
+ ··· 9065y + 529)
c
9
(y
11
6y
9
7y
8
+ 11y
7
+ 27y
6
+ y
5
36y
4
16y
3
+ 16y
2
+ 9y 1)
· (y
22
+ 39y
21
+ ··· + 117y + 1)
c
11
(y
11
23y
10
+ ··· 10y 1)(y
22
52y
21
+ ··· 36y + 1)
14