12n
0648
(K12n
0648
)
A knot diagram
1
Linearized knot diagam
3 8 10 12 8 11 2 5 3 4 6 9
Solving Sequence
3,9
10 4
5,11
8 6 2 1 7 12
c
9
c
3
c
10
c
8
c
5
c
2
c
1
c
7
c
12
c
4
, c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−6.95358 × 10
37
u
23
4.07407 × 10
36
u
22
+ ··· + 1.61095 × 10
39
b 9.52256 × 10
39
,
7.06431 × 10
39
u
23
+ 8.51893 × 10
38
u
22
+ ··· + 2.30366 × 10
41
a 7.64291 × 10
41
,
u
24
+ u
23
+ ··· + 289u + 143i
I
u
2
= h−u
18
u
17
+ ··· + b 1, 2u
16
u
15
+ ··· + a 1, u
19
12u
17
+ ··· + 4u 1i
* 2 irreducible components of dim
C
= 0, with total 43 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−6.95 × 10
37
u
23
4.07 × 10
36
u
22
+ · · · + 1.61 × 10
39
b 9.52 ×
10
39
, 7.06 × 10
39
u
23
+ 8.52 × 10
38
u
22
+ · · · + 2.30 × 10
41
a 7.64 ×
10
41
, u
24
+ u
23
+ · · · + 289u + 143i
(i) Arc colorings
a
3
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
4
=
u
u
3
+ u
a
5
=
0.0306656u
23
0.00369799u
22
+ ··· + 2.32158u + 3.31772
0.0431644u
23
+ 0.00252898u
22
+ ··· + 7.19118u + 5.91114
a
11
=
u
2
+ 1
u
4
+ 2u
2
a
8
=
0.0142787u
23
0.00544253u
22
+ ··· + 2.94433u + 2.42345
0.0139246u
23
0.0131718u
22
+ ··· + 1.01894u + 0.464061
a
6
=
0.0251613u
23
0.000730907u
22
+ ··· + 1.76692u + 2.55543
0.0181599u
23
+ 0.00533470u
22
+ ··· 1.56432u 1.98558
a
2
=
0.0497304u
23
+ 0.00323432u
22
+ ··· 6.95114u 7.14443
0.0419268u
23
0.00473941u
22
+ ··· 4.93122u 6.22408
a
1
=
0.0497304u
23
+ 0.00323432u
22
+ ··· 6.95114u 7.14443
0.0148906u
23
0.00607853u
22
+ ··· + 3.26414u + 1.34988
a
7
=
0.0265932u
23
0.00297561u
22
+ ··· 2.70453u 3.73203
0.00559528u
23
0.00695287u
22
+ ··· + 0.504854u + 0.119250
a
12
=
0.0348398u
23
0.00284421u
22
+ ··· 3.68700u 5.79455
0.0148906u
23
0.00607853u
22
+ ··· + 3.26414u + 1.34988
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0449908u
23
+ 0.00298260u
22
+ ··· 19.5117u 16.1952
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
24
+ 60u
23
+ ··· + 3708160u + 295936
c
2
, c
7
u
24
10u
23
+ ··· + 16u + 544
c
3
, c
9
, c
10
u
24
u
23
+ ··· 289u + 143
c
4
u
24
+ 3u
23
+ ··· 327u 41
c
5
, c
8
u
24
+ 2u
23
+ ··· + 13u 1
c
6
, c
11
u
24
u
23
+ ··· 288u 69
c
12
u
24
36u
22
+ ··· 47638u 14543
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
24
296y
23
+ ··· 4939910283264y + 87578116096
c
2
, c
7
y
24
60y
23
+ ··· 3708160y + 295936
c
3
, c
9
, c
10
y
24
45y
23
+ ··· 70079y + 20449
c
4
y
24
11y
23
+ ··· 33785y + 1681
c
5
, c
8
y
24
+ 26y
23
+ ··· 575y + 1
c
6
, c
11
y
24
9y
23
+ ··· 35058y + 4761
c
12
y
24
72y
23
+ ··· 2969653580y + 211498849
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.998180 + 0.182421I
a = 0.371865 + 0.963824I
b = 0.46248 + 1.36040I
2.89773 4.47411I 11.26620 + 4.32225I
u = 0.998180 0.182421I
a = 0.371865 0.963824I
b = 0.46248 1.36040I
2.89773 + 4.47411I 11.26620 4.32225I
u = 1.08785
a = 0.370138
b = 0.466022
5.81657 15.7030
u = 0.908883 + 0.696346I
a = 0.819047 0.748643I
b = 1.50457 0.48587I
2.29616 + 2.53148I 13.0553 13.0894I
u = 0.908883 0.696346I
a = 0.819047 + 0.748643I
b = 1.50457 + 0.48587I
2.29616 2.53148I 13.0553 + 13.0894I
u = 0.369638 + 0.655856I
a = 0.163913 + 0.088570I
b = 0.483150 + 1.254690I
1.35028 2.85129I 8.82275 0.17568I
u = 0.369638 0.655856I
a = 0.163913 0.088570I
b = 0.483150 1.254690I
1.35028 + 2.85129I 8.82275 + 0.17568I
u = 0.351833 + 0.653611I
a = 1.42495 0.28417I
b = 0.440762 1.267520I
3.72902 2.23669I 11.06844 + 3.08943I
u = 0.351833 0.653611I
a = 1.42495 + 0.28417I
b = 0.440762 + 1.267520I
3.72902 + 2.23669I 11.06844 3.08943I
u = 1.312160 + 0.113933I
a = 0.648596 + 1.219050I
b = 0.265262 + 0.114333I
2.00982 3.68666I 7.35603 + 5.27682I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.312160 0.113933I
a = 0.648596 1.219050I
b = 0.265262 0.114333I
2.00982 + 3.68666I 7.35603 5.27682I
u = 1.42954 + 0.07398I
a = 0.35156 1.37276I
b = 0.443663 1.115380I
9.16253 3.52152I 17.4723 + 4.9311I
u = 1.42954 0.07398I
a = 0.35156 + 1.37276I
b = 0.443663 + 1.115380I
9.16253 + 3.52152I 17.4723 4.9311I
u = 0.172334 + 0.521929I
a = 0.57148 1.66997I
b = 0.572916 + 0.049432I
2.32011 + 1.43982I 3.19830 4.08238I
u = 0.172334 0.521929I
a = 0.57148 + 1.66997I
b = 0.572916 0.049432I
2.32011 1.43982I 3.19830 + 4.08238I
u = 0.406773
a = 0.663948
b = 0.198801
0.603529 16.4560
u = 1.77917
a = 0.251024
b = 0.0435926
16.2026 29.6210
u = 2.04114 + 0.56230I
a = 0.502493 + 0.953370I
b = 1.10365 + 1.70631I
14.2564 + 11.7505I 11.51618 4.21495I
u = 2.04114 0.56230I
a = 0.502493 0.953370I
b = 1.10365 1.70631I
14.2564 11.7505I 11.51618 + 4.21495I
u = 2.37547 + 0.30331I
a = 0.174548 + 1.000270I
b = 0.11023 + 2.21127I
14.5489 0.5683I 8.00000 + 0.I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 2.37547 0.30331I
a = 0.174548 1.000270I
b = 0.11023 2.21127I
14.5489 + 0.5683I 8.00000 + 0.I
u = 2.14046 + 1.17450I
a = 0.469141 0.647096I
b = 0.27079 2.64157I
13.27670 2.35671I 0
u = 2.14046 1.17450I
a = 0.469141 + 0.647096I
b = 0.27079 + 2.64157I
13.27670 + 2.35671I 0
u = 2.61851
a = 0.128998
b = 2.59719
18.9868 8.00000
7
II.
I
u
2
= h−u
18
u
17
+· · ·+b1, 2u
16
u
15
+· · ·+a1, u
19
12u
17
+· · ·+4u1i
(i) Arc colorings
a
3
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
4
=
u
u
3
+ u
a
5
=
2u
16
+ u
15
+ ··· + 6u + 1
u
18
+ u
17
+ ··· u + 1
a
11
=
u
2
+ 1
u
4
+ 2u
2
a
8
=
u
18
u
17
+ ··· + 17u
3
7u
2
u
17
+ u
16
+ ··· + u 1
a
6
=
u
17
+ 2u
16
+ ··· 10u
2
+ 2u
u
16
10u
14
+ ··· + u 1
a
2
=
u
18
12u
16
+ ··· 8u + 2
u
18
+ 2u
17
+ ··· 7u + 2
a
1
=
u
18
12u
16
+ ··· 8u + 2
u
18
+ 2u
17
+ ··· 8u + 2
a
7
=
u
18
+ 12u
16
+ ··· + 5u 1
u
18
+ u
17
+ ··· + 2u
2
2u
a
12
=
2u
18
+ 2u
17
+ ··· 16u + 4
u
18
+ 2u
17
+ ··· 8u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
18
7u
17
+ 4u
16
+ 70u
15
+ 15u
14
288u
13
116u
12
+ 648u
11
+
286u
10
880u
9
387u
8
+ 725u
7
+ 321u
6
320u
5
125u
4
+ 53u
3
15u
2
11u 7
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
19
16u
18
+ ··· + 9u 1
c
2
u
19
8u
17
+ ··· + u + 1
c
3
u
19
12u
17
+ ··· + 4u + 1
c
4
u
19
2u
18
+ ··· + 5u
2
+ 1
c
5
u
19
+ 3u
18
+ ··· 6u
2
1
c
6
u
19
+ 2u
17
+ ··· u 1
c
7
u
19
8u
17
+ ··· + u 1
c
8
u
19
3u
18
+ ··· + 6u
2
+ 1
c
9
, c
10
u
19
12u
17
+ ··· + 4u 1
c
11
u
19
+ 2u
17
+ ··· u + 1
c
12
u
19
u
18
+ ··· 39u 169
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
19
32y
18
+ ··· 19y 1
c
2
, c
7
y
19
16y
18
+ ··· + 9y 1
c
3
, c
9
, c
10
y
19
24y
18
+ ··· 4y
2
1
c
4
y
19
+ 6y
18
+ ··· 10y 1
c
5
, c
8
y
19
+ 7y
18
+ ··· 12y 1
c
6
, c
11
y
19
+ 4y
18
+ ··· 13y 1
c
12
y
19
7y
18
+ ··· 20111y 28561
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.980950 + 0.604076I
a = 0.798772 0.755373I
b = 1.49647 0.52355I
2.48141 2.27470I 1.66056 6.57716I
u = 0.980950 0.604076I
a = 0.798772 + 0.755373I
b = 1.49647 + 0.52355I
2.48141 + 2.27470I 1.66056 + 6.57716I
u = 0.737628 + 0.359811I
a = 0.067452 0.920420I
b = 0.762089 + 0.832433I
5.41374 1.59276I 15.0492 + 2.8168I
u = 0.737628 0.359811I
a = 0.067452 + 0.920420I
b = 0.762089 0.832433I
5.41374 + 1.59276I 15.0492 2.8168I
u = 1.179440 + 0.170240I
a = 0.90264 1.49402I
b = 0.490604 1.115980I
7.08654 + 3.52788I 12.56931 3.15212I
u = 1.179440 0.170240I
a = 0.90264 + 1.49402I
b = 0.490604 + 1.115980I
7.08654 3.52788I 12.56931 + 3.15212I
u = 1.277010 + 0.114842I
a = 0.193294 0.314119I
b = 0.305041 1.145700I
4.51476 5.17759I 14.4043 + 6.7554I
u = 1.277010 0.114842I
a = 0.193294 + 0.314119I
b = 0.305041 + 1.145700I
4.51476 + 5.17759I 14.4043 6.7554I
u = 1.340980 + 0.147089I
a = 0.55132 + 2.05499I
b = 0.135134 + 0.767547I
2.81013 3.35015I 16.3799 + 1.5970I
u = 1.340980 0.147089I
a = 0.55132 2.05499I
b = 0.135134 0.767547I
2.81013 + 3.35015I 16.3799 1.5970I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.42878 + 0.22236I
a = 0.635513 + 0.360503I
b = 0.044798 + 0.642597I
3.93872 + 0.69346I 13.16284 + 0.10930I
u = 1.42878 0.22236I
a = 0.635513 0.360503I
b = 0.044798 0.642597I
3.93872 0.69346I 13.16284 0.10930I
u = 0.353961 + 0.248880I
a = 0.60428 + 1.70616I
b = 0.444558 + 1.167630I
1.30454 + 3.85459I 7.72386 6.55740I
u = 0.353961 0.248880I
a = 0.60428 1.70616I
b = 0.444558 1.167630I
1.30454 3.85459I 7.72386 + 6.55740I
u = 0.112509 + 0.356697I
a = 3.67512 2.27930I
b = 0.086415 0.687232I
1.35323 + 1.56259I 12.20805 3.14313I
u = 0.112509 0.356697I
a = 3.67512 + 2.27930I
b = 0.086415 + 0.687232I
1.35323 1.56259I 12.20805 + 3.14313I
u = 1.62694 + 0.05058I
a = 0.334359 0.989140I
b = 0.609573 1.022040I
8.63988 2.65005I 12.70208 1.23601I
u = 1.62694 0.05058I
a = 0.334359 + 0.989140I
b = 0.609573 + 1.022040I
8.63988 + 2.65005I 12.70208 + 1.23601I
u = 1.81475
a = 0.0145195
b = 0.559404
15.9196 0.921900
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
19
16u
18
+ ··· + 9u 1)(u
24
+ 60u
23
+ ··· + 3708160u + 295936)
c
2
(u
19
8u
17
+ ··· + u + 1)(u
24
10u
23
+ ··· + 16u + 544)
c
3
(u
19
12u
17
+ ··· + 4u + 1)(u
24
u
23
+ ··· 289u + 143)
c
4
(u
19
2u
18
+ ··· + 5u
2
+ 1)(u
24
+ 3u
23
+ ··· 327u 41)
c
5
(u
19
+ 3u
18
+ ··· 6u
2
1)(u
24
+ 2u
23
+ ··· + 13u 1)
c
6
(u
19
+ 2u
17
+ ··· u 1)(u
24
u
23
+ ··· 288u 69)
c
7
(u
19
8u
17
+ ··· + u 1)(u
24
10u
23
+ ··· + 16u + 544)
c
8
(u
19
3u
18
+ ··· + 6u
2
+ 1)(u
24
+ 2u
23
+ ··· + 13u 1)
c
9
, c
10
(u
19
12u
17
+ ··· + 4u 1)(u
24
u
23
+ ··· 289u + 143)
c
11
(u
19
+ 2u
17
+ ··· u + 1)(u
24
u
23
+ ··· 288u 69)
c
12
(u
19
u
18
+ ··· 39u 169)(u
24
36u
22
+ ··· 47638u 14543)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
19
32y
18
+ ··· 19y 1)
· (y
24
296y
23
+ ··· 4939910283264y + 87578116096)
c
2
, c
7
(y
19
16y
18
+ ··· + 9y 1)(y
24
60y
23
+ ··· 3708160y + 295936)
c
3
, c
9
, c
10
(y
19
24y
18
+ ··· 4y
2
1)(y
24
45y
23
+ ··· 70079y + 20449)
c
4
(y
19
+ 6y
18
+ ··· 10y 1)(y
24
11y
23
+ ··· 33785y + 1681)
c
5
, c
8
(y
19
+ 7y
18
+ ··· 12y 1)(y
24
+ 26y
23
+ ··· 575y + 1)
c
6
, c
11
(y
19
+ 4y
18
+ ··· 13y 1)(y
24
9y
23
+ ··· 35058y + 4761)
c
12
(y
19
7y
18
+ ··· 20111y 28561)
· (y
24
72y
23
+ ··· 2969653580y + 211498849)
14