11a
24
(K11a
24
)
A knot diagram
1
Linearized knot diagam
4 1 7 2 11 3 10 6 5 8 9
Solving Sequence
8,11
10
3,7
4 6 9 1 2 5
c
10
c
7
c
3
c
6
c
8
c
11
c
2
c
5
c
1
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h1.30067 × 10
214
u
83
4.91022 × 10
214
u
82
+ ··· + 8.55509 × 10
215
b 2.17725 × 10
215
,
8.45896 × 10
215
u
83
+ 3.25448 × 10
216
u
82
+ ··· + 8.55509 × 10
215
a 2.49116 × 10
216
, u
84
+ 2u
83
+ ··· + 14u + 1i
I
u
2
= hu
3
+ u
2
+ b 1, u
5
u
4
+ u
2
+ a + u + 1, u
6
+ u
5
u
4
2u
3
+ u + 1i
* 2 irreducible components of dim
C
= 0, with total 90 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.30 × 10
214
u
83
4.91 × 10
214
u
82
+ · · · + 8.56 × 10
215
b 2.18 ×
10
215
, 8.46 × 10
215
u
83
+ 3.25 × 10
216
u
82
+ · · · + 8.56 × 10
215
a 2.49 ×
10
216
, u
84
+ 2u
83
+ · · · + 14u + 1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
10
=
1
u
2
a
3
=
0.988763u
83
3.80414u
82
+ ··· 6.80025u + 2.91191
0.0152035u
83
+ 0.0573954u
82
+ ··· 3.42563u + 0.254498
a
7
=
u
u
3
+ u
a
4
=
1.04577u
83
4.16450u
82
+ ··· 4.88381u + 2.99155
0.0467883u
83
+ 0.218798u
82
+ ··· 1.83625u + 0.421194
a
6
=
1.24732u
83
2.76350u
82
+ ··· 86.8323u 7.08081
0.169313u
83
0.538520u
82
+ ··· 6.89260u 0.832713
a
9
=
1.41797u
83
4.43349u
82
+ ··· + 16.8513u + 4.89152
0.467127u
83
+ 0.263584u
82
+ ··· + 3.80614u + 0.383121
a
1
=
0.407084u
83
1.47948u
82
+ ··· 4.70101u + 1.83199
u
3
u
a
2
=
1.94358u
83
6.48012u
82
+ ··· 41.4182u + 1.42713
0.0634831u
83
0.0744360u
82
+ ··· 5.93872u + 0.0614765
a
5
=
1.41663u
83
3.30202u
82
+ ··· 93.7249u 7.91353
0.169313u
83
0.538520u
82
+ ··· 6.89260u 0.832713
a
5
=
1.41663u
83
3.30202u
82
+ ··· 93.7249u 7.91353
0.169313u
83
0.538520u
82
+ ··· 6.89260u 0.832713
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3.48179u
83
+ 6.91671u
82
+ ··· 1.21890u 4.16059
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
84
7u
83
+ ··· 3u + 1
c
2
u
84
+ 41u
83
+ ··· 157u + 1
c
3
, c
6
u
84
u
83
+ ··· 320u + 64
c
5
u
84
6u
83
+ ··· 2u + 1
c
7
, c
10
u
84
+ 2u
83
+ ··· + 14u + 1
c
8
u
84
+ 6u
83
+ ··· 1166u 101
c
9
u
84
+ 2u
83
+ ··· 418u + 367
c
11
u
84
14u
83
+ ··· 2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
84
41y
83
+ ··· + 157y + 1
c
2
y
84
+ 11y
83
+ ··· 14895y + 1
c
3
, c
6
y
84
39y
83
+ ··· 61440y + 4096
c
5
y
84
+ 14y
83
+ ··· + 6y + 1
c
7
, c
10
y
84
54y
83
+ ··· 14y + 1
c
8
y
84
82y
83
+ ··· 878594y + 10201
c
9
y
84
66y
83
+ ··· + 5678926y + 134689
c
11
y
84
6y
83
+ ··· 14y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.997274 + 0.064037I
a = 1.81059 1.67983I
b = 0.108509 + 0.553528I
0.170119 + 1.192110I 0
u = 0.997274 0.064037I
a = 1.81059 + 1.67983I
b = 0.108509 0.553528I
0.170119 1.192110I 0
u = 0.102288 + 0.984625I
a = 0.16025 1.96694I
b = 0.29383 + 3.01137I
3.75795 + 2.95090I 0
u = 0.102288 0.984625I
a = 0.16025 + 1.96694I
b = 0.29383 3.01137I
3.75795 2.95090I 0
u = 0.664606 + 0.732185I
a = 0.123840 + 0.343728I
b = 0.763633 + 0.462053I
3.09506 + 1.90596I 0
u = 0.664606 0.732185I
a = 0.123840 0.343728I
b = 0.763633 0.462053I
3.09506 1.90596I 0
u = 0.863087 + 0.537497I
a = 0.371639 0.064568I
b = 0.655881 0.397465I
2.46714 6.77503I 0
u = 0.863087 0.537497I
a = 0.371639 + 0.064568I
b = 0.655881 + 0.397465I
2.46714 + 6.77503I 0
u = 0.949424 + 0.157182I
a = 0.074074 + 0.452890I
b = 0.331741 + 1.326920I
0.71473 2.85212I 0
u = 0.949424 0.157182I
a = 0.074074 0.452890I
b = 0.331741 1.326920I
0.71473 + 2.85212I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.016320 + 0.211690I
a = 0.675398 + 0.703466I
b = 0.047691 + 0.460046I
1.89935 + 0.79593I 0
u = 1.016320 0.211690I
a = 0.675398 0.703466I
b = 0.047691 0.460046I
1.89935 0.79593I 0
u = 1.018820 + 0.211435I
a = 0.112800 + 0.423033I
b = 0.549106 + 0.960886I
1.52052 3.66155I 0
u = 1.018820 0.211435I
a = 0.112800 0.423033I
b = 0.549106 0.960886I
1.52052 + 3.66155I 0
u = 0.059119 + 1.083010I
a = 0.054493 0.690871I
b = 1.11124 + 1.07233I
3.10217 + 5.44544I 0
u = 0.059119 1.083010I
a = 0.054493 + 0.690871I
b = 1.11124 1.07233I
3.10217 5.44544I 0
u = 1.082570 + 0.076456I
a = 3.41552 + 1.14018I
b = 0.248058 0.161656I
3.90317 + 1.17062I 0
u = 1.082570 0.076456I
a = 3.41552 1.14018I
b = 0.248058 + 0.161656I
3.90317 1.17062I 0
u = 0.911327 + 0.012256I
a = 2.26398 4.32538I
b = 0.798363 + 0.238635I
0.506438 0.641182I 14.9092 + 0.I
u = 0.911327 0.012256I
a = 2.26398 + 4.32538I
b = 0.798363 0.238635I
0.506438 + 0.641182I 14.9092 + 0.I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.079110 + 0.152121I
a = 2.69645 1.48029I
b = 0.222009 + 0.307833I
2.03656 + 6.17754I 0
u = 1.079110 0.152121I
a = 2.69645 + 1.48029I
b = 0.222009 0.307833I
2.03656 6.17754I 0
u = 0.453075 + 0.998389I
a = 0.39643 + 1.40161I
b = 0.93881 1.91477I
3.23379 + 3.44018I 0
u = 0.453075 0.998389I
a = 0.39643 1.40161I
b = 0.93881 + 1.91477I
3.23379 3.44018I 0
u = 0.437239 + 1.006900I
a = 0.042406 0.448835I
b = 1.137930 + 0.255603I
3.77732 0.83071I 0
u = 0.437239 1.006900I
a = 0.042406 + 0.448835I
b = 1.137930 0.255603I
3.77732 + 0.83071I 0
u = 1.102510 + 0.205014I
a = 1.050110 + 0.276781I
b = 0.982351 0.112643I
4.58405 3.81524I 0
u = 1.102510 0.205014I
a = 1.050110 0.276781I
b = 0.982351 + 0.112643I
4.58405 + 3.81524I 0
u = 0.869525 + 0.090739I
a = 0.215754 + 1.105480I
b = 1.26313 + 0.82270I
1.87887 1.58264I 12.5915 + 7.5531I
u = 0.869525 0.090739I
a = 0.215754 1.105480I
b = 1.26313 0.82270I
1.87887 + 1.58264I 12.5915 7.5531I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.116610 + 0.326840I
a = 1.124930 0.288206I
b = 0.860409 + 0.470013I
2.02563 9.85203I 0
u = 1.116610 0.326840I
a = 1.124930 + 0.288206I
b = 0.860409 0.470013I
2.02563 + 9.85203I 0
u = 0.825783
a = 0.898341
b = 1.69707
2.21927 13.1200
u = 0.019790 + 1.184810I
a = 0.09744 + 1.58758I
b = 0.74986 2.86475I
1.35757 + 6.09736I 0
u = 0.019790 1.184810I
a = 0.09744 1.58758I
b = 0.74986 + 2.86475I
1.35757 6.09736I 0
u = 0.760656 + 0.267559I
a = 1.60985 0.17899I
b = 0.171440 + 0.438489I
1.30476 4.74367I 0.87707 + 10.18383I
u = 0.760656 0.267559I
a = 1.60985 + 0.17899I
b = 0.171440 0.438489I
1.30476 + 4.74367I 0.87707 10.18383I
u = 0.753131 + 0.965934I
a = 0.474949 1.156420I
b = 1.32505 + 1.38024I
2.30506 1.39249I 0
u = 0.753131 0.965934I
a = 0.474949 + 1.156420I
b = 1.32505 1.38024I
2.30506 + 1.39249I 0
u = 0.058016 + 0.768540I
a = 0.315104 + 0.734938I
b = 0.518190 0.960123I
1.24805 + 1.52698I 2.33035 1.80956I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.058016 0.768540I
a = 0.315104 0.734938I
b = 0.518190 + 0.960123I
1.24805 1.52698I 2.33035 + 1.80956I
u = 0.068869 + 1.265220I
a = 0.22787 1.51980I
b = 0.81020 + 3.04589I
1.04730 + 11.43990I 0
u = 0.068869 1.265220I
a = 0.22787 + 1.51980I
b = 0.81020 3.04589I
1.04730 11.43990I 0
u = 1.185150 + 0.478372I
a = 2.83251 + 0.12958I
b = 0.11437 3.23192I
0.55551 + 1.40163I 0
u = 1.185150 0.478372I
a = 2.83251 0.12958I
b = 0.11437 + 3.23192I
0.55551 1.40163I 0
u = 1.120340 + 0.633983I
a = 0.107831 0.145857I
b = 0.478833 0.286891I
1.61526 4.99229I 0
u = 1.120340 0.633983I
a = 0.107831 + 0.145857I
b = 0.478833 + 0.286891I
1.61526 + 4.99229I 0
u = 1.313920 + 0.221045I
a = 1.40367 0.49380I
b = 0.39515 1.46173I
8.69358 1.42500I 0
u = 1.313920 0.221045I
a = 1.40367 + 0.49380I
b = 0.39515 + 1.46173I
8.69358 + 1.42500I 0
u = 1.269980 + 0.456591I
a = 0.019552 + 0.257799I
b = 0.197110 + 0.903459I
2.49717 6.15202I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.269980 0.456591I
a = 0.019552 0.257799I
b = 0.197110 0.903459I
2.49717 + 6.15202I 0
u = 1.287330 + 0.518358I
a = 2.19968 + 0.03083I
b = 0.07851 2.92753I
0.05021 8.32055I 0
u = 1.287330 0.518358I
a = 2.19968 0.03083I
b = 0.07851 + 2.92753I
0.05021 + 8.32055I 0
u = 1.359920 + 0.328154I
a = 1.59384 + 0.34412I
b = 0.13897 + 1.87600I
8.89963 7.63957I 0
u = 1.359920 0.328154I
a = 1.59384 0.34412I
b = 0.13897 1.87600I
8.89963 + 7.63957I 0
u = 1.372270 + 0.321304I
a = 0.513421 + 1.100380I
b = 1.12473 + 0.93046I
2.02169 0.07920I 0
u = 1.372270 0.321304I
a = 0.513421 1.100380I
b = 1.12473 0.93046I
2.02169 + 0.07920I 0
u = 1.27275 + 0.62263I
a = 0.488260 0.932888I
b = 1.53439 0.11482I
1.46677 + 3.41872I 0
u = 1.27275 0.62263I
a = 0.488260 + 0.932888I
b = 1.53439 + 0.11482I
1.46677 3.41872I 0
u = 1.32371 + 0.54168I
a = 0.055111 0.254827I
b = 0.432725 0.905285I
0.85835 11.16100I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.32371 0.54168I
a = 0.055111 + 0.254827I
b = 0.432725 + 0.905285I
0.85835 + 11.16100I 0
u = 0.533566 + 0.191258I
a = 2.11026 0.02097I
b = 0.015738 0.400573I
2.75270 0.12135I 4.31662 + 2.02203I
u = 0.533566 0.191258I
a = 2.11026 + 0.02097I
b = 0.015738 + 0.400573I
2.75270 + 0.12135I 4.31662 2.02203I
u = 1.37591 + 0.55145I
a = 1.85420 0.20688I
b = 0.46756 + 2.62832I
5.73608 12.12140I 0
u = 1.37591 0.55145I
a = 1.85420 + 0.20688I
b = 0.46756 2.62832I
5.73608 + 12.12140I 0
u = 1.37982 + 0.60344I
a = 1.81821 + 0.36696I
b = 0.65074 2.69787I
3.1034 17.9006I 0
u = 1.37982 0.60344I
a = 1.81821 0.36696I
b = 0.65074 + 2.69787I
3.1034 + 17.9006I 0
u = 0.133149 + 0.453460I
a = 0.79716 + 2.36462I
b = 0.538862 0.115588I
0.73011 + 6.65250I 2.66432 3.51460I
u = 0.133149 0.453460I
a = 0.79716 2.36462I
b = 0.538862 + 0.115588I
0.73011 6.65250I 2.66432 + 3.51460I
u = 1.41107 + 0.70362I
a = 1.64088 0.08554I
b = 0.22225 + 3.33896I
5.99281 + 3.52843I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.41107 0.70362I
a = 1.64088 + 0.08554I
b = 0.22225 3.33896I
5.99281 3.52843I 0
u = 1.36356 + 0.82563I
a = 1.50074 + 0.27918I
b = 0.07330 3.39650I
4.05037 + 8.85752I 0
u = 1.36356 0.82563I
a = 1.50074 0.27918I
b = 0.07330 + 3.39650I
4.05037 8.85752I 0
u = 1.58214 + 0.40524I
a = 1.51705 + 0.56885I
b = 0.64537 + 3.02218I
6.53306 + 0.44104I 0
u = 1.58214 0.40524I
a = 1.51705 0.56885I
b = 0.64537 3.02218I
6.53306 0.44104I 0
u = 0.049986 + 0.360419I
a = 1.69770 + 1.17273I
b = 0.038801 0.987614I
0.95967 + 1.37657I 3.31883 4.67522I
u = 0.049986 0.360419I
a = 1.69770 1.17273I
b = 0.038801 + 0.987614I
0.95967 1.37657I 3.31883 + 4.67522I
u = 1.66970 + 0.27894I
a = 1.30329 0.71487I
b = 0.93162 2.84030I
5.01931 4.78307I 0
u = 1.66970 0.27894I
a = 1.30329 + 0.71487I
b = 0.93162 + 2.84030I
5.01931 + 4.78307I 0
u = 0.013745 + 0.300945I
a = 1.91747 2.87096I
b = 0.416432 0.110948I
1.66501 + 1.71486I 1.361742 0.047755I
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.013745 0.300945I
a = 1.91747 + 2.87096I
b = 0.416432 + 0.110948I
1.66501 1.71486I 1.361742 + 0.047755I
u = 0.234317
a = 1.53674
b = 1.46885
2.49567 2.13160
u = 0.122932 + 0.103046I
a = 5.15612 0.93081I
b = 0.615821 0.504298I
2.25525 + 1.15492I 4.97585 0.17312I
u = 0.122932 0.103046I
a = 5.15612 + 0.93081I
b = 0.615821 + 0.504298I
2.25525 1.15492I 4.97585 + 0.17312I
13
II.
I
u
2
= hu
3
+ u
2
+ b 1, u
5
u
4
+ u
2
+ a + u + 1, u
6
+ u
5
u
4
2u
3
+ u + 1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
10
=
1
u
2
a
3
=
u
5
+ u
4
u
2
u 1
u
3
u
2
+ 1
a
7
=
u
u
3
+ u
a
4
=
u
5
+ u
4
u
2
u 1
u
3
u
2
+ 1
a
6
=
u
u
3
+ u
a
9
=
u
3
u
5
u
3
+ u
a
1
=
u
3
u
3
u
a
2
=
u
5
+ u
4
+ u
3
u
2
u 1
u
2
u + 1
a
5
=
u
3
u
3
+ u
a
5
=
u
3
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
5
u
4
+ u
3
+ 2u
2
+ 3u 5
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
6
c
2
, c
4
(u + 1)
6
c
3
, c
6
u
6
c
5
, c
8
u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1
c
7
, c
9
, c
11
u
6
u
5
u
4
+ 2u
3
u + 1
c
10
u
6
+ u
5
u
4
2u
3
+ u + 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
6
y
6
c
5
, c
8
y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1
c
7
, c
9
, c
10
c
11
y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.002190 + 0.295542I
a = 2.25915 + 1.43225I
b = 0.66103 1.45708I
0.245672 + 0.924305I 0.60470 + 5.55069I
u = 1.002190 0.295542I
a = 2.25915 1.43225I
b = 0.66103 + 1.45708I
0.245672 0.924305I 0.60470 5.55069I
u = 0.428243 + 0.664531I
a = 0.655968 0.098281I
b = 0.769407 + 0.497010I
3.53554 + 0.92430I 6.31051 0.25702I
u = 0.428243 0.664531I
a = 0.655968 + 0.098281I
b = 0.769407 0.497010I
3.53554 0.92430I 6.31051 + 0.25702I
u = 1.073950 + 0.558752I
a = 0.415113 + 0.381252I
b = 0.391622 0.558752I
1.64493 5.69302I 0.29418 + 8.33058I
u = 1.073950 0.558752I
a = 0.415113 0.381252I
b = 0.391622 + 0.558752I
1.64493 + 5.69302I 0.29418 8.33058I
17
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
6
)(u
84
7u
83
+ ··· 3u + 1)
c
2
((u + 1)
6
)(u
84
+ 41u
83
+ ··· 157u + 1)
c
3
, c
6
u
6
(u
84
u
83
+ ··· 320u + 64)
c
4
((u + 1)
6
)(u
84
7u
83
+ ··· 3u + 1)
c
5
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)(u
84
6u
83
+ ··· 2u + 1)
c
7
(u
6
u
5
u
4
+ 2u
3
u + 1)(u
84
+ 2u
83
+ ··· + 14u + 1)
c
8
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)(u
84
+ 6u
83
+ ··· 1166u 101)
c
9
(u
6
u
5
u
4
+ 2u
3
u + 1)(u
84
+ 2u
83
+ ··· 418u + 367)
c
10
(u
6
+ u
5
u
4
2u
3
+ u + 1)(u
84
+ 2u
83
+ ··· + 14u + 1)
c
11
(u
6
u
5
u
4
+ 2u
3
u + 1)(u
84
14u
83
+ ··· 2u + 1)
18
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y 1)
6
)(y
84
41y
83
+ ··· + 157y + 1)
c
2
((y 1)
6
)(y
84
+ 11y
83
+ ··· 14895y + 1)
c
3
, c
6
y
6
(y
84
39y
83
+ ··· 61440y + 4096)
c
5
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)(y
84
+ 14y
83
+ ··· + 6y + 1)
c
7
, c
10
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)(y
84
54y
83
+ ··· 14y + 1)
c
8
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)(y
84
82y
83
+ ··· 878594y + 10201)
c
9
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
· (y
84
66y
83
+ ··· + 5678926y + 134689)
c
11
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)(y
84
6y
83
+ ··· 14y + 1)
19