12n
0653
(K12n
0653
)
A knot diagram
1
Linearized knot diagam
3 8 11 12 8 10 2 5 3 6 4 9
Solving Sequence
4,12 5,8
6 9 1 11 3 2 7 10
c
4
c
5
c
8
c
12
c
11
c
3
c
2
c
7
c
10
c
1
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h15u
19
+ 52u
18
+ ··· + b 21, 21u
19
+ 75u
18
+ ··· + 2a 23, u
20
+ 5u
19
+ ··· + u 2i
I
u
2
= h2u
12
2u
11
11u
10
+ 8u
9
+ 23u
8
5u
7
22u
6
13u
5
+ 4u
4
+ 16u
3
+ 8u
2
+ b u 2,
2u
12
2u
11
12u
10
+ 9u
9
+ 28u
8
9u
7
31u
6
10u
5
+ 11u
4
+ 20u
3
+ 8u
2
+ a 6u 5,
u
13
2u
12
5u
11
+ 10u
10
+ 10u
9
16u
8
13u
7
+ 6u
6
+ 12u
5
+ 8u
4
4u
3
7u
2
2u + 1i
I
u
3
= hu
5
u
4
2u
3
au + u
2
+ b + u + 1, u
5
a 4u
5
+ 4u
3
a + u
4
+ 11u
3
+ a
2
3au + u
2
2a 4u 6,
u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1i
* 3 irreducible components of dim
C
= 0, with total 45 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h15u
19
+52u
18
+· · ·+b21, 21u
19
+75u
18
+· · ·+2a23, u
20
+5u
19
+· · ·+u2i
(i) Arc colorings
a
4
=
1
0
a
12
=
0
u
a
5
=
1
u
2
a
8
=
10.5000u
19
37.5000u
18
+ ··· 17.5000u + 11.5000
15u
19
52u
18
+ ··· 22u + 21
a
6
=
11
2
u
19
+
37
2
u
18
+ ··· +
11
2
u
11
2
9u
19
+ 30u
18
+ ··· + 12u 11
a
9
=
5
2
u
19
19
2
u
18
+ ···
7
2
u +
5
2
4u
19
+ 13u
18
+ ··· + 6u 3
a
1
=
5
2
u
19
17
2
u
18
+ ···
7
2
u +
7
2
6u
19
20u
18
+ ··· 7u + 7
a
11
=
u
u
a
3
=
u
2
+ 1
u
2
a
2
=
5
2
u
19
+
19
2
u
18
+ ··· +
9
2
u
7
2
3u
19
+ 12u
18
+ ··· + 7u 5
a
7
=
23u
19
80u
18
+ ··· 34u + 27
32u
19
110u
18
+ ··· 45u + 42
a
10
=
22.5000u
19
78.5000u
18
+ ··· 33.5000u + 27.5000
29u
19
100u
18
+ ··· 41u + 39
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 15u
19
52u
18
+ 51u
17
+ 300u
16
63u
15
689u
14
+ 302u
13
+ 905u
12
1067u
11
777u
10
+ 1394u
9
+ 39u
8
722u
7
+ 587u
6
+ 181u
5
+ 7u
4
+ 174u
3
147u
2
9u + 12
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
20
+ 31u
19
+ ··· 5u + 1
c
2
, c
7
, c
12
u
20
+ u
19
+ ··· 3u 1
c
3
, c
4
, c
11
u
20
+ 5u
19
+ ··· + u 2
c
5
, c
8
u
20
u
19
+ ··· 7u + 1
c
6
, c
10
u
20
+ 14u
19
+ ··· + 608u + 64
c
9
u
20
26u
18
+ ··· 494u 599
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
20
103y
19
+ ··· 159y + 1
c
2
, c
7
, c
12
y
20
31y
19
+ ··· + 5y + 1
c
3
, c
4
, c
11
y
20
21y
19
+ ··· 61y + 4
c
5
, c
8
y
20
+ 29y
19
+ ··· 55y + 1
c
6
, c
10
y
20
+ 6y
19
+ ··· 33792y + 4096
c
9
y
20
52y
19
+ ··· + 2577254y + 358801
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.537648 + 0.858586I
a = 0.960669 0.049342I
b = 0.558866 0.798289I
14.2098 + 2.1239I 11.72729 + 0.16245I
u = 0.537648 0.858586I
a = 0.960669 + 0.049342I
b = 0.558866 + 0.798289I
14.2098 2.1239I 11.72729 0.16245I
u = 0.606622 + 0.819368I
a = 0.914544 0.419396I
b = 0.211143 + 1.003760I
14.4361 7.6779I 11.74067 + 4.57873I
u = 0.606622 0.819368I
a = 0.914544 + 0.419396I
b = 0.211143 1.003760I
14.4361 + 7.6779I 11.74067 4.57873I
u = 1.223290 + 0.229738I
a = 0.518734 0.448442I
b = 0.737585 0.429401I
1.41396 + 1.68379I 7.75011 + 2.58763I
u = 1.223290 0.229738I
a = 0.518734 + 0.448442I
b = 0.737585 + 0.429401I
1.41396 1.68379I 7.75011 2.58763I
u = 0.087774 + 0.628145I
a = 0.205193 + 0.654515I
b = 0.429141 0.071442I
2.02337 + 1.45900I 2.57228 5.20755I
u = 0.087774 0.628145I
a = 0.205193 0.654515I
b = 0.429141 + 0.071442I
2.02337 1.45900I 2.57228 + 5.20755I
u = 1.382330 + 0.213207I
a = 0.232569 + 0.103641I
b = 0.343585 0.093682I
2.65671 4.43053I 10.17327 + 4.41788I
u = 1.382330 0.213207I
a = 0.232569 0.103641I
b = 0.343585 + 0.093682I
2.65671 + 4.43053I 10.17327 4.41788I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.43646
a = 0.235964
b = 0.338953
6.53090 14.6160
u = 1.51134 + 0.02336I
a = 0.24536 2.15134I
b = 0.42108 3.24569I
7.13768 + 2.65728I 12.42433 2.06390I
u = 1.51134 0.02336I
a = 0.24536 + 2.15134I
b = 0.42108 + 3.24569I
7.13768 2.65728I 12.42433 + 2.06390I
u = 0.418033 + 0.095358I
a = 0.16881 + 1.84075I
b = 0.246100 0.753394I
0.61706 2.23609I 3.44792 + 0.63650I
u = 0.418033 0.095358I
a = 0.16881 1.84075I
b = 0.246100 + 0.753394I
0.61706 + 2.23609I 3.44792 0.63650I
u = 1.56523 + 0.31596I
a = 0.97491 1.39039I
b = 1.08666 2.48431I
18.4230 + 2.2284I 14.3978 0.8992I
u = 1.56523 0.31596I
a = 0.97491 + 1.39039I
b = 1.08666 + 2.48431I
18.4230 2.2284I 14.3978 + 0.8992I
u = 1.58137 + 0.27874I
a = 0.51960 + 1.97559I
b = 0.27100 + 3.26896I
17.8528 + 11.7492I 14.2038 4.7569I
u = 1.58137 0.27874I
a = 0.51960 1.97559I
b = 0.27100 3.26896I
17.8528 11.7492I 14.2038 + 4.7569I
u = 0.387724
a = 0.818265
b = 0.317261
0.639359 15.5090
6
II.
I
u
2
= h2u
12
2u
11
+· · ·+b2, 2u
12
2u
11
+· · ·+a5, u
13
2u
12
+· · ·2u+1i
(i) Arc colorings
a
4
=
1
0
a
12
=
0
u
a
5
=
1
u
2
a
8
=
2u
12
+ 2u
11
+ ··· + 6u + 5
2u
12
+ 2u
11
+ ··· + u + 2
a
6
=
3u
12
3u
11
+ ··· 5u 5
3u
12
2u
11
+ ··· + 17u
2
3
a
9
=
2u
12
+ 3u
11
+ ··· + 9u + 5
u
12
+ 2u
11
+ ··· + 3u + 1
a
1
=
u
12
3u
11
+ ··· 17u 7
u
11
+ u
10
+ 5u
9
3u
8
10u
7
+ 9u
5
+ 7u
4
6u
2
4u 1
a
11
=
u
u
a
3
=
u
2
+ 1
u
2
a
2
=
u
12
u
11
+ ··· 15u 4
3u
12
+ u
11
+ ··· 7u + 1
a
7
=
5u
12
6u
11
+ ··· 10u 9
5u
12
4u
11
+ ··· + u 6
a
10
=
3u
12
+ 3u
11
+ ··· + 5u + 5
4u
12
+ 4u
11
+ ··· + u + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
12
+ 9u
11
+ 17u
10
41u
9
27u
8
+ 56u
7
+ 32u
6
11u
5
30u
4
29u
3
+ 8u
2
+ 12u 8
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
13
15u
12
+ ··· + 9u 1
c
2
u
13
+ u
12
+ ··· + 3u 1
c
3
, c
4
u
13
2u
12
+ ··· 2u + 1
c
5
u
13
u
12
+ ··· + u 1
c
6
u
13
+ u
12
+ ··· + u + 1
c
7
, c
12
u
13
u
12
+ ··· + 3u + 1
c
8
u
13
+ u
12
+ ··· + u + 1
c
9
u
13
6u
11
8u
10
+ 7u
8
+ 3u
7
+ 16u
6
2u
5
+ 14u
4
3u
3
+ 6u
2
+ 1
c
10
u
13
u
12
+ ··· + u 1
c
11
u
13
+ 2u
12
+ ··· 2u 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
13
31y
12
+ ··· 15y 1
c
2
, c
7
, c
12
y
13
15y
12
+ ··· + 9y 1
c
3
, c
4
, c
11
y
13
14y
12
+ ··· + 18y 1
c
5
, c
8
y
13
+ 5y
12
+ ··· 7y 1
c
6
, c
10
y
13
+ 7y
12
+ ··· 5y 1
c
9
y
13
12y
12
+ ··· 12y 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.132140 + 0.168986I
a = 0.092976 + 0.325055I
b = 0.160192 0.352296I
1.75574 + 2.59120I 12.09350 3.87877I
u = 1.132140 0.168986I
a = 0.092976 0.325055I
b = 0.160192 + 0.352296I
1.75574 2.59120I 12.09350 + 3.87877I
u = 0.189605 + 0.771385I
a = 0.646314 + 0.286377I
b = 0.343451 + 0.444258I
0.707606 + 0.983665I 10.21762 1.58969I
u = 0.189605 0.771385I
a = 0.646314 0.286377I
b = 0.343451 0.444258I
0.707606 0.983665I 10.21762 + 1.58969I
u = 1.27456
a = 2.12141
b = 2.70385
10.1403 16.1260
u = 0.596279 + 0.393194I
a = 0.433017 + 0.867082I
b = 0.082733 0.687283I
1.18520 + 2.76688I 11.52015 6.83060I
u = 0.596279 0.393194I
a = 0.433017 0.867082I
b = 0.082733 + 0.687283I
1.18520 2.76688I 11.52015 + 6.83060I
u = 1.369650 + 0.339979I
a = 0.746659 + 0.696939I
b = 0.78571 + 1.20841I
4.20868 5.03112I 13.5740 + 4.7480I
u = 1.369650 0.339979I
a = 0.746659 0.696939I
b = 0.78571 1.20841I
4.20868 + 5.03112I 13.5740 4.7480I
u = 1.51524
a = 0.421908
b = 0.639294
12.9834 12.2240
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.53980 + 0.14093I
a = 0.10346 1.87763I
b = 0.10530 2.90577I
8.24712 4.85635I 12.41808 + 4.09970I
u = 1.53980 0.14093I
a = 0.10346 + 1.87763I
b = 0.10530 + 2.90577I
8.24712 + 4.85635I 12.41808 4.09970I
u = 0.257830
a = 5.64437
b = 1.45529
6.71567 5.00350
11
III. I
u
3
= hu
5
u
4
2u
3
au + u
2
+ b + u + 1, u
5
a 4u
5
+ · · · 2a
6, u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1i
(i) Arc colorings
a
4
=
1
0
a
12
=
0
u
a
5
=
1
u
2
a
8
=
a
u
5
+ u
4
+ 2u
3
+ au u
2
u 1
a
6
=
u
4
a + u
5
u
3
a u
4
u
2
a u
3
+ a u
u
4
a u
3
a u
2
a + 2u
3
2u
2
+ a 3u 1
a
9
=
u
5
+ u
4
u
2
a + 2u
3
+ au u
2
+ a u 1
u
4
a 2u
5
+ u
3
a + 2u
4
+ 3u
3
+ au u
2
2u 1
a
1
=
3u
5
+ 2u
4
+ 8u
3
+ au 2u
2
a 5u 4
2u
5
+ 2u
4
+ 4u
3
+ au 2u
2
2u 2
a
11
=
u
u
a
3
=
u
2
+ 1
u
2
a
2
=
u
4
a 3u
5
+ u
3
a + u
4
+ u
2
a + 7u
3
a 4u 2
u
4
a 4u
5
+ u
3
a + 2u
4
+ 8u
3
+ au u
2
3u 3
a
7
=
2u
4
a 2u
5
+ 2u
3
a + 2u
4
+ 2u
2
a + 2u
3
2a + u
2u
4
a + 2u
3
a + 2u
2
a 4u
3
+ 4u
2
2a + 5u + 2
a
10
=
u
4
a + u
5
u
3
a u
4
u
2
a u
3
+ a
u
4
a u
3
a u
2
a + 2u
3
2u
2
+ a 2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
8u 18
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
12
+ 21u
11
+ ··· + 44976u + 9409
c
2
, c
7
, c
12
u
12
u
11
+ ··· + 68u + 97
c
3
, c
4
, c
11
(u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)
2
c
5
, c
8
u
12
+ 7u
11
+ ··· 48u 23
c
6
, c
10
(u 1)
12
c
9
u
12
u
11
+ ··· 320u + 239
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
12
37y
11
+ ··· 144089092y + 88529281
c
2
, c
7
, c
12
y
12
21y
11
+ ··· 44976y + 9409
c
3
, c
4
, c
11
(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
2
c
5
, c
8
y
12
+ 7y
11
+ ··· 7180y + 529
c
6
, c
10
(y 1)
12
c
9
y
12
33y
11
+ ··· 136816y + 57121
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.493180 + 0.575288I
a = 0.597504 0.159655I
b = 0.294522 + 1.202870I
3.61949 + 1.97241I 12.57572 3.68478I
u = 0.493180 + 0.575288I
a = 1.45815 + 0.73808I
b = 0.202829 0.422475I
3.61949 + 1.97241I 12.57572 3.68478I
u = 0.493180 0.575288I
a = 0.597504 + 0.159655I
b = 0.294522 1.202870I
3.61949 1.97241I 12.57572 + 3.68478I
u = 0.493180 0.575288I
a = 1.45815 0.73808I
b = 0.202829 + 0.422475I
3.61949 1.97241I 12.57572 + 3.68478I
u = 0.483672
a = 1.45315
b = 2.16590
7.31859 21.4170
u = 0.483672
a = 4.47804
b = 0.702848
7.31859 21.4170
u = 1.52087 + 0.16310I
a = 0.53855 1.90937I
b = 0.74685 3.39023I
10.27530 4.59213I 16.5811 + 3.2048I
u = 1.52087 + 0.16310I
a = 0.72182 + 2.15174I
b = 0.50765 + 2.99173I
10.27530 4.59213I 16.5811 + 3.2048I
u = 1.52087 0.16310I
a = 0.53855 + 1.90937I
b = 0.74685 + 3.39023I
10.27530 + 4.59213I 16.5811 3.2048I
u = 1.52087 0.16310I
a = 0.72182 2.15174I
b = 0.50765 2.99173I
10.27530 + 4.59213I 16.5811 3.2048I
15
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.53904
a = 1.22065
b = 3.24620
14.2398 20.2690
u = 1.53904
a = 2.10923
b = 1.87863
14.2398 20.2690
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
12
+ 21u
11
+ ··· + 44976u + 9409)(u
13
15u
12
+ ··· + 9u 1)
· (u
20
+ 31u
19
+ ··· 5u + 1)
c
2
(u
12
u
11
+ ··· + 68u + 97)(u
13
+ u
12
+ ··· + 3u 1)
· (u
20
+ u
19
+ ··· 3u 1)
c
3
, c
4
((u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)
2
)(u
13
2u
12
+ ··· 2u + 1)
· (u
20
+ 5u
19
+ ··· + u 2)
c
5
(u
12
+ 7u
11
+ ··· 48u 23)(u
13
u
12
+ ··· + u 1)
· (u
20
u
19
+ ··· 7u + 1)
c
6
((u 1)
12
)(u
13
+ u
12
+ ··· + u + 1)(u
20
+ 14u
19
+ ··· + 608u + 64)
c
7
, c
12
(u
12
u
11
+ ··· + 68u + 97)(u
13
u
12
+ ··· + 3u + 1)
· (u
20
+ u
19
+ ··· 3u 1)
c
8
(u
12
+ 7u
11
+ ··· 48u 23)(u
13
+ u
12
+ ··· + u + 1)
· (u
20
u
19
+ ··· 7u + 1)
c
9
(u
12
u
11
+ ··· 320u + 239)
· (u
13
6u
11
8u
10
+ 7u
8
+ 3u
7
+ 16u
6
2u
5
+ 14u
4
3u
3
+ 6u
2
+ 1)
· (u
20
26u
18
+ ··· 494u 599)
c
10
((u 1)
12
)(u
13
u
12
+ ··· + u 1)(u
20
+ 14u
19
+ ··· + 608u + 64)
c
11
((u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)
2
)(u
13
+ 2u
12
+ ··· 2u 1)
· (u
20
+ 5u
19
+ ··· + u 2)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
12
37y
11
+ ··· 144089092y + 88529281)
· (y
13
31y
12
+ ··· 15y 1)(y
20
103y
19
+ ··· 159y + 1)
c
2
, c
7
, c
12
(y
12
21y
11
+ ··· 44976y + 9409)(y
13
15y
12
+ ··· + 9y 1)
· (y
20
31y
19
+ ··· + 5y + 1)
c
3
, c
4
, c
11
(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
2
· (y
13
14y
12
+ ··· + 18y 1)(y
20
21y
19
+ ··· 61y + 4)
c
5
, c
8
(y
12
+ 7y
11
+ ··· 7180y + 529)(y
13
+ 5y
12
+ ··· 7y 1)
· (y
20
+ 29y
19
+ ··· 55y + 1)
c
6
, c
10
((y 1)
12
)(y
13
+ 7y
12
+ ··· 5y 1)
· (y
20
+ 6y
19
+ ··· 33792y + 4096)
c
9
(y
12
33y
11
+ ··· 136816y + 57121)(y
13
12y
12
+ ··· 12y 1)
· (y
20
52y
19
+ ··· + 2577254y + 358801)
18