12n
0654
(K12n
0654
)
A knot diagram
1
Linearized knot diagam
3 8 12 11 8 10 2 5 3 6 4 9
Solving Sequence
5,11
4
9,12
1 3 8 6 2 7 10
c
4
c
11
c
12
c
3
c
8
c
5
c
2
c
7
c
10
c
1
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hu
18
5u
17
+ ··· + b 7, 5u
18
+ 23u
17
+ ··· + 2a + 19, u
19
5u
18
+ ··· 11u + 2i
I
u
2
= h−u
8
u
7
6u
6
5u
5
11u
4
7u
3
6u
2
+ b 2u,
u
8
2u
7
7u
6
11u
5
16u
4
18u
3
13u
2
+ a 8u 2,
u
11
+ 2u
10
+ 9u
9
+ 14u
8
+ 29u
7
+ 34u
6
+ 40u
5
+ 32u
4
+ 20u
3
+ 7u
2
1i
I
u
3
= hu
2
a au + 3u
2
+ 4b a + u + 5, u
2
a + a
2
au u
2
2a 2u 4, u
3
+ 2u 1i
I
u
4
= h−u
3
a u
3
2au u
2
+ b a 2u 1, u
3
a + u
3
+ a
2
+ 2u
2
+ a + 2u, u
4
+ u
3
+ 2u
2
+ 2u + 1i
* 4 irreducible components of dim
C
= 0, with total 44 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
hu
18
5u
17
+· · ·+b7, 5u
18
+23u
17
+· · ·+2a+19, u
19
5u
18
+· · ·11u+2i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
9
=
5
2
u
18
23
2
u
17
+ ··· + 30u
19
2
u
18
+ 5u
17
+ ··· 22u + 7
a
12
=
u
u
3
+ u
a
1
=
1
2
u
18
+
5
2
u
17
+ ··· 5u +
3
2
u
18
+ 4u
17
+ ··· 5u + 1
a
3
=
u
2
+ 1
u
4
2u
2
a
8
=
7
2
u
18
33
2
u
17
+ ··· + 52u
33
2
u
18
+ 5u
17
+ ··· 22u + 7
a
6
=
5
2
u
18
+
23
2
u
17
+ ··· 34u +
17
2
u
18
5u
17
+ ··· + 20u 5
a
2
=
1
2
u
18
+
3
2
u
17
+ ··· 2u +
1
2
u
18
4u
17
+ ··· + 6u 1
a
7
=
4u
18
19u
17
+ ··· + 63u 19
u
18
+ 5u
17
+ ··· 24u + 8
a
10
=
7
2
u
18
33
2
u
17
+ ··· + 54u
33
2
u
18
+ 5u
17
+ ··· 27u + 9
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
17
+ 5u
16
22u
15
+ 64u
14
159u
13
+ 316u
12
537u
11
+
764u
10
924u
9
+ 932u
8
775u
7
+ 509u
6
237u
5
+ 56u
4
+ 27u
3
33u
2
+ 17u 8
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
19
+ 29u
18
+ ··· 5u + 1
c
2
, c
7
, c
12
u
19
+ u
18
+ ··· + u + 1
c
3
, c
4
, c
11
u
19
5u
18
+ ··· 11u + 2
c
5
, c
8
u
19
+ 10u
17
+ ··· 3u + 1
c
6
, c
10
u
19
+ 15u
18
+ ··· + 1280u + 128
c
9
u
19
18u
17
+ ··· + u + 142
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
19
85y
18
+ ··· + 107y 1
c
2
, c
7
, c
12
y
19
29y
18
+ ··· 5y 1
c
3
, c
4
, c
11
y
19
+ 21y
18
+ ··· + 49y 4
c
5
, c
8
y
19
+ 20y
18
+ ··· + 29y 1
c
6
, c
10
y
19
+ 7y
18
+ ··· + 98304y 16384
c
9
y
19
36y
18
+ ··· 59071y 20164
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.855612 + 0.517253I
a = 0.909632 0.056467I
b = 0.55550 + 1.60326I
13.4415 7.8504I 10.93721 + 4.73909I
u = 0.855612 0.517253I
a = 0.909632 + 0.056467I
b = 0.55550 1.60326I
13.4415 + 7.8504I 10.93721 4.73909I
u = 0.837505 + 0.614615I
a = 0.803451 0.480637I
b = 0.25051 1.50923I
13.15870 + 2.26983I 11.04237 + 0.00811I
u = 0.837505 0.614615I
a = 0.803451 + 0.480637I
b = 0.25051 + 1.50923I
13.15870 2.26983I 11.04237 0.00811I
u = 0.113992 + 0.724011I
a = 0.100196 + 0.799956I
b = 0.365076 + 0.254010I
1.84434 + 1.33494I 1.83885 5.69262I
u = 0.113992 0.724011I
a = 0.100196 0.799956I
b = 0.365076 0.254010I
1.84434 1.33494I 1.83885 + 5.69262I
u = 0.030735 + 1.321750I
a = 1.098310 + 0.606917I
b = 0.403445 + 0.928311I
2.98081 + 0.93862I 5.64110 2.81933I
u = 0.030735 1.321750I
a = 1.098310 0.606917I
b = 0.403445 0.928311I
2.98081 0.93862I 5.64110 + 2.81933I
u = 0.115597 + 1.356600I
a = 1.77650 0.51209I
b = 0.91251 1.25835I
3.95111 4.05741I 5.74595 + 1.84063I
u = 0.115597 1.356600I
a = 1.77650 + 0.51209I
b = 0.91251 + 1.25835I
3.95111 + 4.05741I 5.74595 1.84063I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.31913 + 1.53475I
a = 1.73237 + 0.83605I
b = 0.85879 + 1.57727I
6.80749 12.16250I 7.67551 + 5.42074I
u = 0.31913 1.53475I
a = 1.73237 0.83605I
b = 0.85879 1.57727I
6.80749 + 12.16250I 7.67551 5.42074I
u = 0.398864 + 0.081266I
a = 0.07628 + 1.71759I
b = 0.427663 1.071520I
0.63713 2.25906I 4.49996 + 0.38823I
u = 0.398864 0.081266I
a = 0.07628 1.71759I
b = 0.427663 + 1.071520I
0.63713 + 2.25906I 4.49996 0.38823I
u = 0.30835 + 1.59968I
a = 0.798169 1.114480I
b = 0.029454 1.281070I
5.90194 2.02936I 8.97202 + 0.94297I
u = 0.30835 1.59968I
a = 0.798169 + 1.114480I
b = 0.029454 + 1.281070I
5.90194 + 2.02936I 8.97202 0.94297I
u = 0.363080
a = 0.809970
b = 0.215750
0.659169 15.1130
u = 0.07027 + 1.64614I
a = 0.493254 + 0.199283I
b = 0.441412 0.066654I
10.11590 + 2.22289I 2.40930 2.51224I
u = 0.07027 1.64614I
a = 0.493254 0.199283I
b = 0.441412 + 0.066654I
10.11590 2.22289I 2.40930 + 2.51224I
6
II.
I
u
2
= h−u
8
u
7
+· · ·+b2u, u
8
2u
7
+· · ·+a2, u
11
+2u
10
+· · ·+7u
2
1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
9
=
u
8
+ 2u
7
+ 7u
6
+ 11u
5
+ 16u
4
+ 18u
3
+ 13u
2
+ 8u + 2
u
8
+ u
7
+ 6u
6
+ 5u
5
+ 11u
4
+ 7u
3
+ 6u
2
+ 2u
a
12
=
u
u
3
+ u
a
1
=
u
10
3u
9
+ ··· 14u 3
u
10
2u
9
8u
8
12u
7
22u
6
24u
5
25u
4
17u
3
10u
2
2u
a
3
=
u
2
+ 1
u
4
2u
2
a
8
=
u
7
+ u
6
+ 6u
5
+ 5u
4
+ 11u
3
+ 7u
2
+ 6u + 2
u
8
+ u
7
+ 6u
6
+ 5u
5
+ 11u
4
+ 7u
3
+ 6u
2
+ 2u
a
6
=
u
6
u
5
5u
4
4u
3
7u
2
4u 2
u
7
u
6
5u
5
4u
4
7u
3
4u
2
3u
a
2
=
u
9
2u
8
8u
7
12u
6
22u
5
24u
4
25u
3
17u
2
10u 2
u
10
2u
9
8u
8
12u
7
22u
6
24u
5
26u
4
18u
3
12u
2
3u
a
7
=
u
10
2u
9
+ ··· 9u 2
u
8
2u
7
6u
6
9u
5
11u
4
11u
3
6u
2
3u 1
a
10
=
u
5
+ u
4
+ 4u
3
+ 3u
2
+ 4u + 2
u
8
+ u
7
+ 6u
6
+ 5u
5
+ 11u
4
+ 7u
3
+ 6u
2
+ 3u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 3u
10
+ 6u
9
+ 27u
8
+ 39u
7
+ 85u
6
+ 85u
5
+ 108u
4
+ 66u
3
+ 41u
2
+ 5u 11
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
11
11u
10
+ ··· + 6u 1
c
2
u
11
+ u
10
5u
9
4u
8
+ 8u
7
+ 5u
6
6u
5
7u
4
+ 3u
2
1
c
3
, c
4
u
11
+ 2u
10
+ ··· + 7u
2
1
c
5
u
11
+ u
9
4u
8
+ 2u
7
3u
6
+ 7u
5
3u
4
+ 3u
3
4u
2
1
c
6
u
11
+ 4u
9
+ 3u
8
+ 3u
7
+ 7u
6
+ 3u
5
+ 2u
4
+ 4u
3
+ u
2
+ 1
c
7
, c
12
u
11
u
10
5u
9
+ 4u
8
+ 8u
7
5u
6
6u
5
+ 7u
4
3u
2
+ 1
c
8
u
11
+ u
9
+ 4u
8
+ 2u
7
+ 3u
6
+ 7u
5
+ 3u
4
+ 3u
3
+ 4u
2
+ 1
c
9
u
11
5u
9
+ 2u
8
+ 10u
7
+ 3u
6
+ 3u
5
+ u
4
u
3
+ 2u
2
+ 1
c
10
u
11
+ 4u
9
3u
8
+ 3u
7
7u
6
+ 3u
5
2u
4
+ 4u
3
u
2
1
c
11
u
11
2u
10
+ ··· 7u
2
+ 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
11
23y
10
+ ··· 10y 1
c
2
, c
7
, c
12
y
11
11y
10
+ ··· + 6y 1
c
3
, c
4
, c
11
y
11
+ 14y
10
+ ··· + 14y 1
c
5
, c
8
y
11
+ 2y
10
+ 5y
9
+ 2y
8
+ y
6
+ 11y
5
+ y
4
21y
3
22y
2
8y 1
c
6
, c
10
y
11
+ 8y
10
+ 22y
9
+ 21y
8
y
7
11y
6
y
5
2y
3
5y
2
2y 1
c
9
y
11
10y
10
+ ··· 4y 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.395494 + 0.824290I
a = 0.720569 + 0.626450I
b = 0.190505 + 0.832468I
0.620962 + 0.437817I 9.18978 1.12208I
u = 0.395494 0.824290I
a = 0.720569 0.626450I
b = 0.190505 0.832468I
0.620962 0.437817I 9.18978 + 1.12208I
u = 0.568934 + 0.281691I
a = 0.550853 + 0.784586I
b = 0.488844 1.076040I
1.08686 + 2.94207I 9.96542 7.42015I
u = 0.568934 0.281691I
a = 0.550853 0.784586I
b = 0.488844 + 1.076040I
1.08686 2.94207I 9.96542 + 7.42015I
u = 0.125362 + 1.374090I
a = 1.48225 0.25773I
b = 1.065730 + 0.479865I
2.02402 1.43083I 5.20918 + 0.10056I
u = 0.125362 1.374090I
a = 1.48225 + 0.25773I
b = 1.065730 0.479865I
2.02402 + 1.43083I 5.20918 0.10056I
u = 0.20089 + 1.44390I
a = 1.56865 0.46843I
b = 0.86003 1.16265I
4.55914 + 5.69959I 3.05206 5.79000I
u = 0.20089 1.44390I
a = 1.56865 + 0.46843I
b = 0.86003 + 1.16265I
4.55914 5.69959I 3.05206 + 5.79000I
u = 0.08861 + 1.68680I
a = 0.263127 + 0.581865I
b = 0.069116 + 0.558344I
9.51549 + 2.22958I 11.44069 2.17239I
u = 0.08861 1.68680I
a = 0.263127 0.581865I
b = 0.069116 0.558344I
9.51549 2.22958I 11.44069 + 2.17239I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.257134
a = 5.30713
b = 1.08552
6.72007 5.28570
11
III.
I
u
3
= hu
2
aau+3u
2
+4ba+ u+5, u
2
a+a
2
auu
2
2a2u4, u
3
+2u1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
9
=
a
1
4
u
2
a
3
4
u
2
+ ··· +
1
4
a
5
4
a
12
=
u
u + 1
a
1
=
1
4
u
2
a
3
4
u
2
+ ···
3
4
a
13
4
1
4
u
2
a
1
4
u
2
+ ··· +
3
4
a
3
4
a
3
=
u
2
+ 1
u
a
8
=
1
4
u
2
a +
3
4
u
2
+ ··· +
3
4
a +
5
4
1
4
u
2
a
3
4
u
2
+ ··· +
1
4
a
5
4
a
6
=
u
2
+ 2
1
4
u
2
a
5
4
u
2
+ ··· +
3
4
a
7
4
a
2
=
3
4
u
2
a +
3
4
u
2
+ ···
5
4
a +
1
4
1
2
u
2
a
1
2
u
2
+ ··· +
1
2
a
5
2
a
7
=
2u
2
4
1
2
u
2
a +
5
2
u
2
+ ···
3
2
a +
7
2
a
10
=
u
2
+ 2
1
4
u
2
a
5
4
u
2
+ ··· +
3
4
a
7
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
4u 18
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
6
+ 6u
5
+ 11u
4
+ 30u
3
+ 81u
2
+ 57u + 16
c
2
, c
7
, c
12
u
6
3u
4
+ 4u
3
+ u
2
7u 4
c
3
, c
4
, c
11
(u
3
+ 2u 1)
2
c
5
, c
8
u
6
+ 2u
5
+ 3u
4
+ 8u
3
+ 9u
2
+ 9u + 2
c
6
, c
10
(u 1)
6
c
9
u
6
+ 3u
5
3u
4
9u
3
+ 7u
2
+ 10u 17
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
6
14y
5
77y
4
+ 230y
3
+ 3493y
2
657y + 256
c
2
, c
7
, c
12
y
6
6y
5
+ 11y
4
30y
3
+ 81y
2
57y + 16
c
3
, c
4
, c
11
(y
3
+ 4y
2
+ 4y 1)
2
c
5
, c
8
y
6
+ 2y
5
5y
4
42y
3
51y
2
45y + 4
c
6
, c
10
(y 1)
6
c
9
y
6
15y
5
+ 77y
4
217y
3
+ 331y
2
338y + 289
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.22670 + 1.46771I
a = 1.54629 0.37257I
b = 0.529360 0.960345I
2.86100 + 5.13794I 8.68207 3.20902I
u = 0.22670 + 1.46771I
a = 1.21680 + 1.17483I
b = 0.63214 + 1.62580I
2.86100 + 5.13794I 8.68207 3.20902I
u = 0.22670 1.46771I
a = 1.54629 + 0.37257I
b = 0.529360 + 0.960345I
2.86100 5.13794I 8.68207 + 3.20902I
u = 0.22670 1.46771I
a = 1.21680 1.17483I
b = 0.63214 1.62580I
2.86100 5.13794I 8.68207 + 3.20902I
u = 0.453398
a = 1.29347
b = 1.92103
7.36693 20.6360
u = 0.453398
a = 3.95244
b = 0.284535
7.36693 20.6360
15
IV. I
u
4
= h−u
3
a u
3
2au u
2
+ b a 2u 1, u
3
a + u
3
+ a
2
+ 2u
2
+
a + 2u, u
4
+ u
3
+ 2u
2
+ 2u + 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
9
=
a
u
3
a + u
3
+ 2au + u
2
+ a + 2u + 1
a
12
=
u
u
3
+ u
a
1
=
u
3
a u
3
+ au 2u
2
3u
2u
3
a + 3u + 1
a
3
=
u
2
+ 1
u
3
+ 2u + 1
a
8
=
u
3
a u
3
2au u
2
2u 1
u
3
a + u
3
+ 2au + u
2
+ a + 2u + 1
a
6
=
u
3
u
2
2u 2
u
3
+ au + 2u
2
+ a + u + 2
a
2
=
u
3
a u
2
a 2u
3
2au u
2
2a 4u 1
u
3
a + u
2
a + 2u
3
+ au + a + 4u + 3
a
7
=
2u
3
+ 2u
2
+ 4u + 4
2u
3
2au 4u
2
2a 3u 4
a
10
=
u
3
u
2
2u 2
u
3
+ au + 2u
2
+ a + 2u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
4u 14
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
+ 15u
7
+ ··· + 966u + 361
c
2
, c
7
, c
12
u
8
u
7
7u
6
+ 3u
5
+ 20u
4
+ 3u
3
25u
2
4u + 19
c
3
, c
4
, c
11
(u
4
+ u
3
+ 2u
2
+ 2u + 1)
2
c
5
, c
8
u
8
+ 5u
7
+ 13u
6
+ 23u
5
+ 36u
4
+ 31u
3
+ 31u
2
+ 10u + 7
c
6
, c
10
(u 1)
8
c
9
u
8
4u
7
+ 3u
6
+ 20u
5
+ 8u
4
2u
3
+ 28u
2
+ 48u + 31
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
8
35y
7
+ ··· + 84142y + 130321
c
2
, c
7
, c
12
y
8
15y
7
+ ··· 966y + 361
c
3
, c
4
, c
11
(y
4
+ 3y
3
+ 2y
2
+ 1)
2
c
5
, c
8
y
8
+ y
7
+ 11y
6
+ 159y
5
+ 590y
4
+ 993y
3
+ 845y
2
+ 334y + 49
c
6
, c
10
(y 1)
8
c
9
y
8
10y
7
+ ··· 568y + 961
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.621744 + 0.440597I
a = 1.40199 + 0.41923I
b = 0.306391 1.124160I
3.28987 + 2.02988I 12.00000 3.46410I
u = 0.621744 + 0.440597I
a = 0.523731 + 0.006202I
b = 0.00117 + 1.44231I
3.28987 + 2.02988I 12.00000 3.46410I
u = 0.621744 0.440597I
a = 1.40199 0.41923I
b = 0.306391 + 1.124160I
3.28987 2.02988I 12.00000 + 3.46410I
u = 0.621744 0.440597I
a = 0.523731 0.006202I
b = 0.00117 1.44231I
3.28987 2.02988I 12.00000 + 3.46410I
u = 0.121744 + 1.306620I
a = 0.999194 0.897147I
b = 0.054173 + 0.641191I
3.28987 2.02988I 12.00000 + 3.46410I
u = 0.121744 + 1.306620I
a = 2.62094 1.27550I
b = 2.13827 1.18907I
3.28987 2.02988I 12.00000 + 3.46410I
u = 0.121744 1.306620I
a = 0.999194 + 0.897147I
b = 0.054173 0.641191I
3.28987 + 2.02988I 12.00000 3.46410I
u = 0.121744 1.306620I
a = 2.62094 + 1.27550I
b = 2.13827 + 1.18907I
3.28987 + 2.02988I 12.00000 3.46410I
19
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
6
+ 6u
5
+ 11u
4
+ 30u
3
+ 81u
2
+ 57u + 16)
· (u
8
+ 15u
7
+ ··· + 966u + 361)(u
11
11u
10
+ ··· + 6u 1)
· (u
19
+ 29u
18
+ ··· 5u + 1)
c
2
(u
6
3u
4
+ 4u
3
+ u
2
7u 4)
· (u
8
u
7
7u
6
+ 3u
5
+ 20u
4
+ 3u
3
25u
2
4u + 19)
· (u
11
+ u
10
5u
9
4u
8
+ 8u
7
+ 5u
6
6u
5
7u
4
+ 3u
2
1)
· (u
19
+ u
18
+ ··· + u + 1)
c
3
, c
4
((u
3
+ 2u 1)
2
)(u
4
+ u
3
+ 2u
2
+ 2u + 1)
2
(u
11
+ 2u
10
+ ··· + 7u
2
1)
· (u
19
5u
18
+ ··· 11u + 2)
c
5
(u
6
+ 2u
5
+ 3u
4
+ 8u
3
+ 9u
2
+ 9u + 2)
· (u
8
+ 5u
7
+ 13u
6
+ 23u
5
+ 36u
4
+ 31u
3
+ 31u
2
+ 10u + 7)
· (u
11
+ u
9
4u
8
+ 2u
7
3u
6
+ 7u
5
3u
4
+ 3u
3
4u
2
1)
· (u
19
+ 10u
17
+ ··· 3u + 1)
c
6
(u 1)
14
(u
11
+ 4u
9
+ 3u
8
+ 3u
7
+ 7u
6
+ 3u
5
+ 2u
4
+ 4u
3
+ u
2
+ 1)
· (u
19
+ 15u
18
+ ··· + 1280u + 128)
c
7
, c
12
(u
6
3u
4
+ 4u
3
+ u
2
7u 4)
· (u
8
u
7
7u
6
+ 3u
5
+ 20u
4
+ 3u
3
25u
2
4u + 19)
· (u
11
u
10
5u
9
+ 4u
8
+ 8u
7
5u
6
6u
5
+ 7u
4
3u
2
+ 1)
· (u
19
+ u
18
+ ··· + u + 1)
c
8
(u
6
+ 2u
5
+ 3u
4
+ 8u
3
+ 9u
2
+ 9u + 2)
· (u
8
+ 5u
7
+ 13u
6
+ 23u
5
+ 36u
4
+ 31u
3
+ 31u
2
+ 10u + 7)
· (u
11
+ u
9
+ 4u
8
+ 2u
7
+ 3u
6
+ 7u
5
+ 3u
4
+ 3u
3
+ 4u
2
+ 1)
· (u
19
+ 10u
17
+ ··· 3u + 1)
c
9
(u
6
+ 3u
5
3u
4
9u
3
+ 7u
2
+ 10u 17)
· (u
8
4u
7
+ 3u
6
+ 20u
5
+ 8u
4
2u
3
+ 28u
2
+ 48u + 31)
· (u
11
5u
9
+ 2u
8
+ 10u
7
+ 3u
6
+ 3u
5
+ u
4
u
3
+ 2u
2
+ 1)
· (u
19
18u
17
+ ··· + u + 142)
c
10
(u 1)
14
(u
11
+ 4u
9
3u
8
+ 3u
7
7u
6
+ 3u
5
2u
4
+ 4u
3
u
2
1)
· (u
19
+ 15u
18
+ ··· + 1280u + 128)
c
11
((u
3
+ 2u 1)
2
)(u
4
+ u
3
+ 2u
2
+ 2u + 1)
2
(u
11
2u
10
+ ··· 7u
2
+ 1)
· (u
19
5u
18
+ ··· 11u + 2)
20
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
6
14y
5
77y
4
+ 230y
3
+ 3493y
2
657y + 256)
· (y
8
35y
7
+ ··· + 84142y + 130321)(y
11
23y
10
+ ··· 10y 1)
· (y
19
85y
18
+ ··· + 107y 1)
c
2
, c
7
, c
12
(y
6
6y
5
+ 11y
4
30y
3
+ 81y
2
57y + 16)
· (y
8
15y
7
+ ··· 966y + 361)(y
11
11y
10
+ ··· + 6y 1)
· (y
19
29y
18
+ ··· 5y 1)
c
3
, c
4
, c
11
(y
3
+ 4y
2
+ 4y 1)
2
(y
4
+ 3y
3
+ 2y
2
+ 1)
2
· (y
11
+ 14y
10
+ ··· + 14y 1)(y
19
+ 21y
18
+ ··· + 49y 4)
c
5
, c
8
(y
6
+ 2y
5
5y
4
42y
3
51y
2
45y + 4)
· (y
8
+ y
7
+ 11y
6
+ 159y
5
+ 590y
4
+ 993y
3
+ 845y
2
+ 334y + 49)
· (y
11
+ 2y
10
+ 5y
9
+ 2y
8
+ y
6
+ 11y
5
+ y
4
21y
3
22y
2
8y 1)
· (y
19
+ 20y
18
+ ··· + 29y 1)
c
6
, c
10
(y 1)
14
· (y
11
+ 8y
10
+ 22y
9
+ 21y
8
y
7
11y
6
y
5
2y
3
5y
2
2y 1)
· (y
19
+ 7y
18
+ ··· + 98304y 16384)
c
9
(y
6
15y
5
+ 77y
4
217y
3
+ 331y
2
338y + 289)
· (y
8
10y
7
+ ··· 568y + 961)(y
11
10y
10
+ ··· 4y 1)
· (y
19
36y
18
+ ··· 59071y 20164)
21