12n
0661
(K12n
0661
)
A knot diagram
1
Linearized knot diagam
3 8 9 12 11 10 2 6 3 8 5 4
Solving Sequence
5,12
4
1,9
3 11 6 8 2 7 10
c
4
c
12
c
3
c
11
c
5
c
8
c
2
c
7
c
10
c
1
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.88753 × 10
16
u
26
7.56446 × 10
16
u
25
+ ··· + 3.81765 × 10
17
b 2.36711 × 10
17
,
7.72254 × 10
17
u
26
+ 1.53152 × 10
18
u
25
+ ··· + 3.81765 × 10
17
a + 1.17596 × 10
19
, u
27
+ 2u
26
+ ··· + 13u + 1i
I
u
2
= h−u
12
+ u
11
8u
10
+ 7u
9
24u
8
+ 17u
7
33u
6
+ 15u
5
19u
4
2u
2
+ b 4u,
u
12
u
11
+ 8u
10
7u
9
+ 24u
8
17u
7
+ 33u
6
15u
5
+ 20u
4
u
3
+ 5u
2
+ a + 2u + 2,
u
13
u
12
+ 9u
11
8u
10
+ 31u
9
23u
8
+ 50u
7
26u
6
+ 36u
5
5u
4
+ 8u
3
+ 6u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 40 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.89 × 10
16
u
26
7.56 × 10
16
u
25
+ · · · + 3.82 × 10
17
b 2.37 ×
10
17
, 7.72 × 10
17
u
26
+ 1.53 × 10
18
u
25
+ · · · + 3.82 × 10
17
a + 1.18 ×
10
19
, u
27
+ 2u
26
+ · · · + 13u + 1i
(i) Arc colorings
a
5
=
1
0
a
12
=
0
u
a
4
=
1
u
2
a
1
=
u
u
3
+ u
a
9
=
2.02285u
26
4.01168u
25
+ ··· + 52.8694u 30.8031
0.0494422u
26
+ 0.198144u
25
+ ··· 4.98870u + 0.620042
a
3
=
2.30870u
26
+ 4.40950u
25
+ ··· 64.8476u + 32.0288
0.147916u
26
0.156483u
25
+ ··· + 5.40884u 0.571583
a
11
=
u
u
a
6
=
u
2
+ 1
u
2
a
8
=
1.84488u
26
3.63901u
25
+ ··· + 46.6032u 30.4259
0.0335197u
26
+ 0.124979u
25
+ ··· 3.47040u + 0.729526
a
2
=
5.51519u
26
+ 10.4146u
25
+ ··· 140.640u + 79.5005
0.539565u
26
0.738431u
25
+ ··· + 12.0070u 1.51404
a
7
=
6.44254u
26
+ 12.6459u
25
+ ··· 163.824u + 94.6771
0.187806u
26
+ 0.130509u
25
+ ··· + 3.17687u 2.60252
a
10
=
4.41532u
26
8.66985u
25
+ ··· + 116.266u 63.9888
0.0901988u
26
0.0255952u
25
+ ··· + 1.47740u + 1.99746
(ii) Obstruction class = 1
(iii) Cusp Shapes =
512696248127693729
381765450474394411
u
26
1173688396623260553
381765450474394411
u
25
+ ··· +
23974986416882589793
381765450474394411
u
7032162693009829437
381765450474394411
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
27
+ 43u
26
+ ··· + 32307u + 14641
c
2
, c
7
u
27
+ u
26
+ ··· 451u 121
c
3
, c
9
u
27
u
26
+ ··· + 57u + 173
c
4
, c
5
, c
11
c
12
u
27
+ 2u
26
+ ··· + 13u + 1
c
6
u
27
30u
25
+ ··· + 20449u 8017
c
8
u
27
5u
26
+ ··· 38u + 7
c
10
u
27
22u
25
+ ··· + 125u 21
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
27
111y
26
+ ··· + 6730511623y 214358881
c
2
, c
7
y
27
43y
26
+ ··· + 32307y 14641
c
3
, c
9
y
27
11y
26
+ ··· + 147185y 29929
c
4
, c
5
, c
11
c
12
y
27
+ 38y
26
+ ··· + 237y 1
c
6
y
27
60y
26
+ ··· 129367431y 64272289
c
8
y
27
7y
26
+ ··· + 1402y 49
c
10
y
27
44y
26
+ ··· 965y 441
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.038928 + 1.096540I
a = 0.339795 0.956003I
b = 0.047794 + 0.583517I
1.18227 + 2.78711I 8.53482 4.99224I
u = 0.038928 1.096540I
a = 0.339795 + 0.956003I
b = 0.047794 0.583517I
1.18227 2.78711I 8.53482 + 4.99224I
u = 0.060221 + 1.114710I
a = 0.818699 + 1.150860I
b = 0.00282 2.15523I
11.46510 0.44076I 9.43738 0.19503I
u = 0.060221 1.114710I
a = 0.818699 1.150860I
b = 0.00282 + 2.15523I
11.46510 + 0.44076I 9.43738 + 0.19503I
u = 1.18869
a = 0.494164
b = 0.786510
9.76195 9.69870
u = 0.319861 + 0.734406I
a = 1.137130 0.483412I
b = 0.082638 0.422987I
2.86657 2.08543I 10.74476 + 3.06559I
u = 0.319861 0.734406I
a = 1.137130 + 0.483412I
b = 0.082638 + 0.422987I
2.86657 + 2.08543I 10.74476 3.06559I
u = 0.374600 + 0.697774I
a = 0.765943 0.335826I
b = 0.067516 + 0.335617I
0.19323 + 1.53182I 2.51900 3.03384I
u = 0.374600 0.697774I
a = 0.765943 + 0.335826I
b = 0.067516 0.335617I
0.19323 1.53182I 2.51900 + 3.03384I
u = 0.445707 + 1.146890I
a = 0.198922 + 0.327688I
b = 0.275375 + 0.416461I
0.824285 + 1.070290I 8.64760 + 1.85610I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.445707 1.146890I
a = 0.198922 0.327688I
b = 0.275375 0.416461I
0.824285 1.070290I 8.64760 1.85610I
u = 0.803778 + 1.109510I
a = 0.585598 + 0.655588I
b = 0.0328420 0.1176830I
13.1170 6.5745I 9.22636 + 4.44172I
u = 0.803778 1.109510I
a = 0.585598 0.655588I
b = 0.0328420 + 0.1176830I
13.1170 + 6.5745I 9.22636 4.44172I
u = 0.11687 + 1.62312I
a = 1.64946 + 0.43051I
b = 3.21083 0.53420I
11.01260 3.84052I 10.07314 + 2.86056I
u = 0.11687 1.62312I
a = 1.64946 0.43051I
b = 3.21083 + 0.53420I
11.01260 + 3.84052I 10.07314 2.86056I
u = 0.11486 + 1.65386I
a = 1.306150 0.183873I
b = 2.63732 + 0.04241I
8.53404 + 3.33702I 6.52566 + 0.I
u = 0.11486 1.65386I
a = 1.306150 + 0.183873I
b = 2.63732 0.04241I
8.53404 3.33702I 6.52566 + 0.I
u = 0.314955 + 0.040141I
a = 1.52461 0.75675I
b = 0.092808 + 1.092340I
2.49846 + 1.59988I 3.26170 4.46285I
u = 0.314955 0.040141I
a = 1.52461 + 0.75675I
b = 0.092808 1.092340I
2.49846 1.59988I 3.26170 + 4.46285I
u = 0.291278
a = 0.909250
b = 0.503041
0.940177 10.5360
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.02099 + 1.78831I
a = 1.199340 + 0.558142I
b = 2.31418 0.09316I
17.2683 0.8391I 0
u = 0.02099 1.78831I
a = 1.199340 0.558142I
b = 2.31418 + 0.09316I
17.2683 + 0.8391I 0
u = 0.23930 + 1.77241I
a = 1.50180 + 0.12267I
b = 2.92542 0.18853I
16.5332 10.9055I 0
u = 0.23930 1.77241I
a = 1.50180 0.12267I
b = 2.92542 + 0.18853I
16.5332 + 10.9055I 0
u = 0.04590 + 1.81690I
a = 1.197200 0.034284I
b = 2.33171 0.21126I
12.44700 + 3.08894I 0
u = 0.04590 1.81690I
a = 1.197200 + 0.034284I
b = 2.33171 + 0.21126I
12.44700 3.08894I 0
u = 0.0678774
a = 33.0841
b = 0.875475
7.70070 21.8510
7
II.
I
u
2
= h−u
12
+u
11
+· · ·+b4u, u
12
u
11
+· · ·+a+2, u
13
u
12
+· · ·+6u
2
+1i
(i) Arc colorings
a
5
=
1
0
a
12
=
0
u
a
4
=
1
u
2
a
1
=
u
u
3
+ u
a
9
=
u
12
+ u
11
+ ··· 2u 2
u
12
u
11
+ 8u
10
7u
9
+ 24u
8
17u
7
+ 33u
6
15u
5
+ 19u
4
+ 2u
2
+ 4u
a
3
=
u
12
u
11
+ ··· + 9u
2
+ 4u
u
9
u
8
+ 6u
7
5u
6
+ 12u
5
7u
4
+ 9u
3
+ u + 2
a
11
=
u
u
a
6
=
u
2
+ 1
u
2
a
8
=
u
12
+ u
11
+ ··· + u 2
2u
12
2u
11
+ ··· + 2u
2
+ 5u
a
2
=
2u
12
3u
11
+ ··· + u 1
u
11
+ 7u
9
+ 17u
7
+ u
6
+ 17u
5
+ 4u
4
+ 10u
3
+ 5u
2
+ 5u + 2
a
7
=
u
12
u
11
+ ··· 6u + 3
u
12
6u
10
+ ··· 2u 1
a
10
=
u
10
+ 2u
9
8u
8
+ 13u
7
24u
6
+ 29u
5
31u
4
+ 23u
3
13u
2
+ 3u
u
12
+ 2u
11
+ ··· 3u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 2u
12
4u
11
+ 19u
10
31u
9
+ 70u
8
87u
7
+ 119u
6
101u
5
+ 82u
4
37u
3
+ 7u
2
+ u 11
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
13
12u
12
+ ··· + 6u 1
c
2
u
13
6u
11
+ ··· + 3u
2
1
c
3
u
13
+ 4u
11
+ u
10
+ 3u
9
+ 3u
8
3u
7
+ u
6
u
5
5u
4
+ 2u
3
4u
2
1
c
4
, c
5
u
13
u
12
+ ··· + 6u
2
+ 1
c
6
u
13
u
12
+ ··· 4u + 1
c
7
u
13
6u
11
+ ··· 3u
2
+ 1
c
8
u
13
+ 4u
12
+ ··· u 1
c
9
u
13
+ 4u
11
u
10
+ 3u
9
3u
8
3u
7
u
6
u
5
+ 5u
4
+ 2u
3
+ 4u
2
+ 1
c
10
u
13
+ 5u
12
+ ··· + 4u + 1
c
11
, c
12
u
13
+ u
12
+ ··· 6u
2
1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
13
16y
12
+ ··· 10y 1
c
2
, c
7
y
13
12y
12
+ ··· + 6y 1
c
3
, c
9
y
13
+ 8y
12
+ ··· 8y 1
c
4
, c
5
, c
11
c
12
y
13
+ 17y
12
+ ··· 12y 1
c
6
y
13
5y
12
+ ··· 4y 1
c
8
y
13
+ 4y
12
+ ··· + 5y 1
c
10
y
13
17y
12
+ ··· 10y 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.133548 + 1.037260I
a = 0.533043 + 0.773593I
b = 0.502915 0.004440I
0.15268 + 2.04240I 3.65004 2.96160I
u = 0.133548 1.037260I
a = 0.533043 0.773593I
b = 0.502915 + 0.004440I
0.15268 2.04240I 3.65004 + 2.96160I
u = 0.595022 + 0.705190I
a = 0.707954 0.450630I
b = 0.334443 0.017859I
0.95065 + 2.25169I 8.21474 6.15376I
u = 0.595022 0.705190I
a = 0.707954 + 0.450630I
b = 0.334443 + 0.017859I
0.95065 2.25169I 8.21474 + 6.15376I
u = 0.18499 + 1.50758I
a = 1.06900 + 1.10979I
b = 1.96964 2.19015I
12.75340 2.45911I 12.84063 + 2.25061I
u = 0.18499 1.50758I
a = 1.06900 1.10979I
b = 1.96964 + 2.19015I
12.75340 + 2.45911I 12.84063 2.25061I
u = 0.458933
a = 3.86284
b = 0.172095
7.33687 0.945020
u = 0.01093 + 1.55303I
a = 0.566263 0.677012I
b = 1.203680 + 0.099823I
4.99307 1.29173I 8.47906 + 1.03783I
u = 0.01093 1.55303I
a = 0.566263 + 0.677012I
b = 1.203680 0.099823I
4.99307 + 1.29173I 8.47906 1.03783I
u = 0.047246 + 0.397006I
a = 1.63460 0.77504I
b = 0.15026 + 1.40825I
1.86356 1.48404I 10.17394 + 1.43832I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.047246 0.397006I
a = 1.63460 + 0.77504I
b = 0.15026 1.40825I
1.86356 + 1.48404I 10.17394 1.43832I
u = 0.12770 + 1.61697I
a = 1.309750 0.068445I
b = 2.83963 + 0.06093I
8.95416 + 4.67635I 7.61410 5.21153I
u = 0.12770 1.61697I
a = 1.309750 + 0.068445I
b = 2.83963 0.06093I
8.95416 4.67635I 7.61410 + 5.21153I
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
13
12u
12
+ ··· + 6u 1)(u
27
+ 43u
26
+ ··· + 32307u + 14641)
c
2
(u
13
6u
11
+ ··· + 3u
2
1)(u
27
+ u
26
+ ··· 451u 121)
c
3
(u
13
+ 4u
11
+ u
10
+ 3u
9
+ 3u
8
3u
7
+ u
6
u
5
5u
4
+ 2u
3
4u
2
1)
· (u
27
u
26
+ ··· + 57u + 173)
c
4
, c
5
(u
13
u
12
+ ··· + 6u
2
+ 1)(u
27
+ 2u
26
+ ··· + 13u + 1)
c
6
(u
13
u
12
+ ··· 4u + 1)(u
27
30u
25
+ ··· + 20449u 8017)
c
7
(u
13
6u
11
+ ··· 3u
2
+ 1)(u
27
+ u
26
+ ··· 451u 121)
c
8
(u
13
+ 4u
12
+ ··· u 1)(u
27
5u
26
+ ··· 38u + 7)
c
9
(u
13
+ 4u
11
u
10
+ 3u
9
3u
8
3u
7
u
6
u
5
+ 5u
4
+ 2u
3
+ 4u
2
+ 1)
· (u
27
u
26
+ ··· + 57u + 173)
c
10
(u
13
+ 5u
12
+ ··· + 4u + 1)(u
27
22u
25
+ ··· + 125u 21)
c
11
, c
12
(u
13
+ u
12
+ ··· 6u
2
1)(u
27
+ 2u
26
+ ··· + 13u + 1)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
13
16y
12
+ ··· 10y 1)
· (y
27
111y
26
+ ··· + 6730511623y 214358881)
c
2
, c
7
(y
13
12y
12
+ ··· + 6y 1)(y
27
43y
26
+ ··· + 32307y 14641)
c
3
, c
9
(y
13
+ 8y
12
+ ··· 8y 1)(y
27
11y
26
+ ··· + 147185y 29929)
c
4
, c
5
, c
11
c
12
(y
13
+ 17y
12
+ ··· 12y 1)(y
27
+ 38y
26
+ ··· + 237y 1)
c
6
(y
13
5y
12
+ ··· 4y 1)
· (y
27
60y
26
+ ··· 129367431y 64272289)
c
8
(y
13
+ 4y
12
+ ··· + 5y 1)(y
27
7y
26
+ ··· + 1402y 49)
c
10
(y
13
17y
12
+ ··· 10y 1)(y
27
44y
26
+ ··· 965y 441)
14