12n
0662
(K12n
0662
)
A knot diagram
1
Linearized knot diagam
3 8 9 12 8 10 2 11 3 6 5 4
Solving Sequence
5,12
4
1,9
3 11 8 6 2 7 10
c
4
c
12
c
3
c
11
c
8
c
5
c
2
c
7
c
10
c
1
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h3.56429 × 10
66
u
46
+ 1.38822 × 10
67
u
45
+ ··· + 1.35802 × 10
68
b 1.96080 × 10
67
,
2.47131 × 10
68
u
46
9.94693 × 10
68
u
45
+ ··· + 1.49382 × 10
69
a + 2.99067 × 10
69
, u
47
+ 4u
46
+ ··· + u + 11i
I
u
2
= h−4u
16
+ 4u
15
+ ··· + b 4, 2u
17
+ 2u
16
+ ··· + a 4, u
18
u
17
+ ··· 4u + 1i
* 2 irreducible components of dim
C
= 0, with total 65 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h3.56×10
66
u
46
+1.39×10
67
u
45
+· · ·+1.36×10
68
b1.96×10
67
, 2.47×
10
68
u
46
9.95×10
68
u
45
+· · ·+1.49×10
69
a+2.99×10
69
, u
47
+4u
46
+· · ·+u+11i
(i) Arc colorings
a
5
=
1
0
a
12
=
0
u
a
4
=
1
u
2
a
1
=
u
u
3
+ u
a
9
=
0.165436u
46
+ 0.665872u
45
+ ··· + 47.6506u 2.00203
0.0262463u
46
0.102224u
45
+ ··· + 2.75590u + 0.144387
a
3
=
0.0228210u
46
+ 0.0919063u
45
+ ··· + 22.9291u + 6.98832
0.0353642u
46
0.136035u
45
+ ··· 1.25538u + 0.587575
a
11
=
u
u
a
8
=
0.172179u
46
+ 0.702253u
45
+ ··· + 49.1886u 1.92623
0.0329894u
46
0.138604u
45
+ ··· + 1.21792u + 0.0685910
a
6
=
0.0344253u
46
0.174526u
45
+ ··· + 8.78426u + 2.63038
0.0166373u
46
0.0395220u
45
+ ··· 0.358128u + 0.921788
a
2
=
0.0320584u
46
0.155060u
45
+ ··· 31.9101u + 3.00707
0.0833370u
46
0.330300u
45
+ ··· 4.63638u + 0.105685
a
7
=
0.0658054u
46
0.226720u
45
+ ··· 5.52898u 1.15248
0.0661854u
46
+ 0.269634u
45
+ ··· + 2.54666u + 0.0845939
a
10
=
0.103828u
46
+ 0.400441u
45
+ ··· + 14.9287u 1.57199
0.0711995u
46
0.276077u
45
+ ··· 0.849870u + 0.420108
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0933045u
46
0.348811u
45
+ ··· + 5.64696u + 9.13255
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
47
+ 56u
46
+ ··· + 13184125u + 534361
c
2
, c
7
u
47
+ 2u
46
+ ··· 315u + 731
c
3
, c
9
u
47
u
46
+ ··· 3782u + 667
c
4
, c
11
, c
12
u
47
+ 4u
46
+ ··· + u + 11
c
5
u
47
+ 8u
46
+ ··· + 151u + 149
c
6
, c
10
u
47
+ u
46
+ ··· + 368u 103
c
8
u
47
4u
45
+ ··· + 23u + 3
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
47
124y
46
+ ··· + 5168548507345y 285541678321
c
2
, c
7
y
47
56y
46
+ ··· + 13184125y 534361
c
3
, c
9
y
47
9y
46
+ ··· + 9199640y 444889
c
4
, c
11
, c
12
y
47
+ 54y
46
+ ··· 10053y 121
c
5
y
47
+ 32y
46
+ ··· 1091719y 22201
c
6
, c
10
y
47
+ 5y
46
+ ··· + 92988y 10609
c
8
y
47
8y
46
+ ··· 113y 9
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.230731 + 1.086340I
a = 0.094144 1.313970I
b = 0.243008 + 0.226914I
2.98236 + 2.61578I 1.41474 2.87187I
u = 0.230731 1.086340I
a = 0.094144 + 1.313970I
b = 0.243008 0.226914I
2.98236 2.61578I 1.41474 + 2.87187I
u = 0.903444 + 0.695127I
a = 0.0854529 0.0543974I
b = 0.609527 + 0.047815I
0.73075 + 3.15581I 8.86017 6.34037I
u = 0.903444 0.695127I
a = 0.0854529 + 0.0543974I
b = 0.609527 0.047815I
0.73075 3.15581I 8.86017 + 6.34037I
u = 0.818444
a = 0.271814
b = 1.18073
3.88729 1.39940
u = 0.315844 + 0.740860I
a = 0.67860 1.93996I
b = 0.053790 + 1.035250I
7.17929 3.64393I 6.03198 + 2.78404I
u = 0.315844 0.740860I
a = 0.67860 + 1.93996I
b = 0.053790 1.035250I
7.17929 + 3.64393I 6.03198 2.78404I
u = 0.660176 + 0.415759I
a = 0.815252 0.503616I
b = 0.269834 + 0.274621I
0.54494 + 2.07931I 3.70506 3.58771I
u = 0.660176 0.415759I
a = 0.815252 + 0.503616I
b = 0.269834 0.274621I
0.54494 2.07931I 3.70506 + 3.58771I
u = 0.259697 + 1.247040I
a = 1.70284 1.07261I
b = 1.80846 + 0.76841I
7.62776 3.97997I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.259697 1.247040I
a = 1.70284 + 1.07261I
b = 1.80846 0.76841I
7.62776 + 3.97997I 0
u = 1.048870 + 0.734928I
a = 0.199629 + 0.382583I
b = 0.707111 0.228325I
6.81414 8.86603I 0
u = 1.048870 0.734928I
a = 0.199629 0.382583I
b = 0.707111 + 0.228325I
6.81414 + 8.86603I 0
u = 0.101342 + 1.311880I
a = 0.412441 + 0.121949I
b = 0.688238 + 1.091370I
1.93463 1.62052I 0
u = 0.101342 1.311880I
a = 0.412441 0.121949I
b = 0.688238 1.091370I
1.93463 + 1.62052I 0
u = 0.16958 + 1.41249I
a = 1.68224 + 0.29426I
b = 2.51973 + 0.29584I
4.53442 4.80175I 0
u = 0.16958 1.41249I
a = 1.68224 0.29426I
b = 2.51973 0.29584I
4.53442 + 4.80175I 0
u = 0.009774 + 0.569826I
a = 0.14382 + 2.50997I
b = 1.11181 1.45066I
6.39394 + 2.76050I 5.07909 4.30524I
u = 0.009774 0.569826I
a = 0.14382 2.50997I
b = 1.11181 + 1.45066I
6.39394 2.76050I 5.07909 + 4.30524I
u = 0.24676 + 1.41083I
a = 0.974844 + 0.134792I
b = 1.208570 0.117394I
1.56923 + 2.42458I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.24676 1.41083I
a = 0.974844 0.134792I
b = 1.208570 + 0.117394I
1.56923 2.42458I 0
u = 0.360762 + 0.434634I
a = 0.637654 0.160116I
b = 0.121281 1.284990I
5.11013 0.60703I 1.28346 3.49418I
u = 0.360762 0.434634I
a = 0.637654 + 0.160116I
b = 0.121281 + 1.284990I
5.11013 + 0.60703I 1.28346 + 3.49418I
u = 0.26561 + 1.41132I
a = 1.54991 0.05070I
b = 2.44053 + 0.39781I
5.19455 + 5.50491I 0
u = 0.26561 1.41132I
a = 1.54991 + 0.05070I
b = 2.44053 0.39781I
5.19455 5.50491I 0
u = 0.125509 + 0.520647I
a = 0.765539 0.405108I
b = 0.309014 + 0.532780I
0.839180 + 0.890051I 6.16723 4.38006I
u = 0.125509 0.520647I
a = 0.765539 + 0.405108I
b = 0.309014 0.532780I
0.839180 0.890051I 6.16723 + 4.38006I
u = 0.435533 + 0.178866I
a = 1.50551 0.63819I
b = 0.574481 0.251116I
0.66530 2.58665I 6.41102 + 3.60115I
u = 0.435533 0.178866I
a = 1.50551 + 0.63819I
b = 0.574481 + 0.251116I
0.66530 + 2.58665I 6.41102 3.60115I
u = 0.08203 + 1.58782I
a = 1.268210 0.226418I
b = 1.97982 0.29031I
8.01777 0.17418I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.08203 1.58782I
a = 1.268210 + 0.226418I
b = 1.97982 + 0.29031I
8.01777 + 0.17418I 0
u = 0.11259 + 1.60042I
a = 0.729677 0.296946I
b = 1.135860 + 0.762303I
4.00355 + 1.63505I 0
u = 0.11259 1.60042I
a = 0.729677 + 0.296946I
b = 1.135860 0.762303I
4.00355 1.63505I 0
u = 0.03550 + 1.61092I
a = 1.29442 + 0.57703I
b = 1.86006 + 0.22479I
14.1356 + 3.0975I 0
u = 0.03550 1.61092I
a = 1.29442 0.57703I
b = 1.86006 0.22479I
14.1356 3.0975I 0
u = 0.12802 + 1.62058I
a = 1.292130 0.127233I
b = 2.04273 0.55165I
15.2468 5.5387I 0
u = 0.12802 1.62058I
a = 1.292130 + 0.127233I
b = 2.04273 + 0.55165I
15.2468 + 5.5387I 0
u = 0.25028 + 1.64833I
a = 1.240380 + 0.010109I
b = 1.92318 0.59872I
7.20599 + 7.37595I 0
u = 0.25028 1.64833I
a = 1.240380 0.010109I
b = 1.92318 + 0.59872I
7.20599 7.37595I 0
u = 1.40824 + 0.91175I
a = 0.059175 0.279970I
b = 0.184771 0.022624I
6.49736 + 1.06394I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.40824 0.91175I
a = 0.059175 + 0.279970I
b = 0.184771 + 0.022624I
6.49736 1.06394I 0
u = 0.35417 + 1.64601I
a = 1.48951 + 0.08896I
b = 2.26832 0.64624I
14.5107 14.0705I 0
u = 0.35417 1.64601I
a = 1.48951 0.08896I
b = 2.26832 + 0.64624I
14.5107 + 14.0705I 0
u = 0.25743 + 1.76322I
a = 1.194790 0.225335I
b = 1.92781 + 0.54097I
16.0072 4.6010I 0
u = 0.25743 1.76322I
a = 1.194790 + 0.225335I
b = 1.92781 0.54097I
16.0072 + 4.6010I 0
u = 0.042363 + 0.155552I
a = 4.48250 + 6.51526I
b = 0.008354 + 0.583528I
2.00944 + 2.36150I 6.99099 + 1.74215I
u = 0.042363 0.155552I
a = 4.48250 6.51526I
b = 0.008354 0.583528I
2.00944 2.36150I 6.99099 1.74215I
9
II.
I
u
2
= h−4u
16
+4u
15
+· · ·+b4, 2u
17
+2u
16
+· · ·+a4, u
18
u
17
+· · ·−4u+1i
(i) Arc colorings
a
5
=
1
0
a
12
=
0
u
a
4
=
1
u
2
a
1
=
u
u
3
+ u
a
9
=
2u
17
2u
16
+ ··· 8u + 4
4u
16
4u
15
+ ··· 19u + 4
a
3
=
2u
17
6u
16
+ ··· + 30u 2
4u
16
3u
15
+ ··· 12u + 5
a
11
=
u
u
a
8
=
5u
17
+ 37u
15
+ ··· 22u + 8
3u
17
+ 2u
16
+ ··· + 7u
2
5u
a
6
=
u
17
+ 7u
16
+ ··· 5u + 6
5u
16
+ 5u
15
+ ··· + 10u 2
a
2
=
u
17
5u
16
+ ··· + 18u + 1
u
17
+ 3u
16
+ ··· 20u + 6
a
7
=
3u
17
+ u
16
+ ··· 3u 3
2u
17
u
16
+ ··· + 5u 2
a
10
=
6u
17
+ 5u
16
+ ··· + 30u 8
7u
17
7u
16
+ ··· + 15u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
17
+ 15u
16
6u
15
+ 124u
14
78u
13
+ 428u
12
330u
11
+ 860u
10
804u
9
+ 1204u
8
1198u
7
+ 1236u
6
1032u
5
+ 790u
4
445u
3
+ 213u
2
65u + 14
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
18
15u
17
+ ··· 10u + 1
c
2
u
18
u
17
+ ··· 5u
2
+ 1
c
3
u
18
+ 6u
16
+ ··· u + 1
c
4
u
18
u
17
+ ··· 4u + 1
c
5
u
18
+ u
17
+ ··· 2u + 1
c
6
u
18
+ 7u
16
+ ··· 3u + 1
c
7
u
18
+ u
17
+ ··· 5u
2
+ 1
c
8
u
18
+ 5u
17
+ ··· + 4u + 1
c
9
u
18
+ 6u
16
+ ··· + u + 1
c
10
u
18
+ 7u
16
+ ··· + 3u + 1
c
11
, c
12
u
18
+ u
17
+ ··· + 4u + 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
18
19y
17
+ ··· + 6y + 1
c
2
, c
7
y
18
15y
17
+ ··· 10y + 1
c
3
, c
9
y
18
+ 12y
17
+ ··· + 11y + 1
c
4
, c
11
, c
12
y
18
+ 19y
17
+ ··· + 24y + 1
c
5
y
18
+ 13y
17
+ ··· + 22y + 1
c
6
, c
10
y
18
+ 14y
17
+ ··· + 15y + 1
c
8
y
18
11y
17
+ ··· + 12y + 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.047457 + 1.260530I
a = 0.463361 0.372899I
b = 0.75763 + 1.65026I
1.07422 1.82174I 2.53563 + 3.44461I
u = 0.047457 1.260530I
a = 0.463361 + 0.372899I
b = 0.75763 1.65026I
1.07422 + 1.82174I 2.53563 3.44461I
u = 0.624909 + 0.377226I
a = 1.085780 0.083376I
b = 0.359942 + 0.016839I
1.55326 + 2.89712I 3.21609 6.87440I
u = 0.624909 0.377226I
a = 1.085780 + 0.083376I
b = 0.359942 0.016839I
1.55326 2.89712I 3.21609 + 6.87440I
u = 0.811576 + 0.982182I
a = 0.203378 0.578815I
b = 0.041786 + 0.805202I
5.97620 + 1.12633I 2.64487 2.46137I
u = 0.811576 0.982182I
a = 0.203378 + 0.578815I
b = 0.041786 0.805202I
5.97620 1.12633I 2.64487 + 2.46137I
u = 0.248975 + 1.257170I
a = 1.70042 + 1.40960I
b = 2.26145 1.10023I
8.03080 4.68996I 8.61446 + 8.30623I
u = 0.248975 1.257170I
a = 1.70042 1.40960I
b = 2.26145 + 1.10023I
8.03080 + 4.68996I 8.61446 8.30623I
u = 0.310491 + 0.635862I
a = 0.93533 + 1.31096I
b = 0.187193 0.083340I
1.60805 + 2.77366I 4.09387 6.07484I
u = 0.310491 0.635862I
a = 0.93533 1.31096I
b = 0.187193 + 0.083340I
1.60805 2.77366I 4.09387 + 6.07484I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.014631 + 1.305350I
a = 0.630377 1.122440I
b = 0.846119 + 0.087531I
1.59046 1.08301I 3.32575 + 0.28729I
u = 0.014631 1.305350I
a = 0.630377 + 1.122440I
b = 0.846119 0.087531I
1.59046 + 1.08301I 3.32575 0.28729I
u = 0.20726 + 1.40864I
a = 1.66745 0.04254I
b = 2.57675 + 0.57229I
3.94351 + 5.76224I 0.19696 7.32113I
u = 0.20726 1.40864I
a = 1.66745 + 0.04254I
b = 2.57675 0.57229I
3.94351 5.76224I 0.19696 + 7.32113I
u = 0.29358 + 1.54080I
a = 0.716837 + 0.233224I
b = 1.191490 0.331330I
2.32605 + 2.81106I 7.01886 6.08609I
u = 0.29358 1.54080I
a = 0.716837 0.233224I
b = 1.191490 + 0.331330I
2.32605 2.81106I 7.01886 + 6.08609I
u = 0.062225 + 0.316348I
a = 1.80727 1.62985I
b = 0.282355 1.294230I
5.08446 + 1.31343I 0.64304 6.49722I
u = 0.062225 0.316348I
a = 1.80727 + 1.62985I
b = 0.282355 + 1.294230I
5.08446 1.31343I 0.64304 + 6.49722I
14
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
18
15u
17
+ ··· 10u + 1)
· (u
47
+ 56u
46
+ ··· + 13184125u + 534361)
c
2
(u
18
u
17
+ ··· 5u
2
+ 1)(u
47
+ 2u
46
+ ··· 315u + 731)
c
3
(u
18
+ 6u
16
+ ··· u + 1)(u
47
u
46
+ ··· 3782u + 667)
c
4
(u
18
u
17
+ ··· 4u + 1)(u
47
+ 4u
46
+ ··· + u + 11)
c
5
(u
18
+ u
17
+ ··· 2u + 1)(u
47
+ 8u
46
+ ··· + 151u + 149)
c
6
(u
18
+ 7u
16
+ ··· 3u + 1)(u
47
+ u
46
+ ··· + 368u 103)
c
7
(u
18
+ u
17
+ ··· 5u
2
+ 1)(u
47
+ 2u
46
+ ··· 315u + 731)
c
8
(u
18
+ 5u
17
+ ··· + 4u + 1)(u
47
4u
45
+ ··· + 23u + 3)
c
9
(u
18
+ 6u
16
+ ··· + u + 1)(u
47
u
46
+ ··· 3782u + 667)
c
10
(u
18
+ 7u
16
+ ··· + 3u + 1)(u
47
+ u
46
+ ··· + 368u 103)
c
11
, c
12
(u
18
+ u
17
+ ··· + 4u + 1)(u
47
+ 4u
46
+ ··· + u + 11)
15
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
18
19y
17
+ ··· + 6y + 1)
· (y
47
124y
46
+ ··· + 5168548507345y 285541678321)
c
2
, c
7
(y
18
15y
17
+ ··· 10y + 1)
· (y
47
56y
46
+ ··· + 13184125y 534361)
c
3
, c
9
(y
18
+ 12y
17
+ ··· + 11y + 1)(y
47
9y
46
+ ··· + 9199640y 444889)
c
4
, c
11
, c
12
(y
18
+ 19y
17
+ ··· + 24y + 1)(y
47
+ 54y
46
+ ··· 10053y 121)
c
5
(y
18
+ 13y
17
+ ··· + 22y + 1)(y
47
+ 32y
46
+ ··· 1091719y 22201)
c
6
, c
10
(y
18
+ 14y
17
+ ··· + 15y + 1)(y
47
+ 5y
46
+ ··· + 92988y 10609)
c
8
(y
18
11y
17
+ ··· + 12y + 1)(y
47
8y
46
+ ··· 113y 9)
16