12n
0666
(K12n
0666
)
A knot diagram
1
Linearized knot diagam
4 5 6 8 9 11 12 2 3 6 7 8
Solving Sequence
8,12 1,5
4 2 9 7 11 6 3 10
c
12
c
4
c
1
c
8
c
7
c
11
c
6
c
3
c
9
c
2
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
15
+ 6u
13
+ ··· + b 4, 5u
15
4u
14
+ ··· + 3a 13, u
16
+ 2u
15
+ ··· 13u + 3i
I
u
2
= h−u
13
a + u
13
+ ··· a + 1, u
13
a 2u
13
+ ··· + a + 7,
u
14
u
13
7u
12
+ 5u
11
+ 19u
10
4u
9
26u
8
13u
7
+ 17u
6
+ 21u
5
+ u
4
4u
3
6u
2
3u 1i
I
u
3
= hu
6
4u
4
+ 2u
3
+ 4u
2
+ b 3u + 1, u
5
u
4
+ 4u
3
+ 2u
2
+ a 5u 1,
u
7
+ 2u
6
3u
5
6u
4
+ 3u
3
+ 5u
2
+ 1i
I
u
4
= hb 1, a
2
+ a + u 2, u
2
u 1i
I
u
5
= hb 1, a, u + 1i
I
u
6
= h−u
2
+ b + 2, u
2
+ 3a 2u + 1, u
3
+ 2u
2
u 3i
I
u
7
= hb, a 1, u 1i
I
u
8
= hb + 1, a 1, u 1i
I
v
1
= ha, b 1, v + 1i
* 9 irreducible components of dim
C
= 0, with total 62 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−u
15
+6u
13
+· · ·+b4, 5u
15
4u
14
+· · ·+3a13, u
16
+2u
15
+· · ·13u+3i
(i) Arc colorings
a
8
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
5
=
5
3
u
15
+
4
3
u
14
+ ··· 18u +
13
3
u
15
6u
13
+ ··· 18u + 4
a
4
=
5
3
u
15
+
4
3
u
14
+ ··· 18u +
13
3
5u
15
+ 3u
14
+ ··· 49u + 10
a
2
=
2
3
u
15
2
3
u
14
+ ··· 13u +
10
3
3u
15
+ u
14
+ ··· 35u + 7
a
9
=
1
3
u
15
4
3
u
14
+ ··· 20u +
11
3
u
15
u
14
+ ··· 24u + 5
a
7
=
u
u
a
11
=
u
2
+ 1
u
2
a
6
=
u
3
+ 2u
u
3
+ u
a
3
=
2
3
u
15
2
3
u
14
+ ··· + 6u
5
3
2u
15
+ u
14
+ ··· 8u + 1
a
10
=
u
4
+ 3u
2
1
u
4
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
15
+ 4u
14
36u
13
14u
12
+ 103u
11
32u
10
158u
9
+ 170u
8
+
88u
7
217u
6
+ 91u
5
+ 87u
4
95u
3
+ 35u
2
+ 10u 18
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
16
+ u
15
+ ··· + 13u + 1
c
2
u
16
+ 10u
15
+ ··· 5u 3
c
4
, c
9
u
16
5u
15
+ ··· 17u + 5
c
5
, c
8
u
16
+ 2u
15
+ ··· 2u 1
c
6
, c
7
, c
10
c
11
, c
12
u
16
2u
15
+ ··· + 13u + 3
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
y
16
+ 13y
15
+ ··· 49y + 1
c
2
y
16
4y
14
+ ··· + 113y + 9
c
4
, c
9
y
16
11y
15
+ ··· 199y + 25
c
5
, c
8
y
16
10y
15
+ ··· 18y + 1
c
6
, c
7
, c
10
c
11
, c
12
y
16
16y
15
+ ··· 43y + 9
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.548500 + 0.853725I
a = 0.30836 1.43712I
b = 0.66590 1.54507I
5.38391 10.31740I 5.41022 + 7.34778I
u = 0.548500 0.853725I
a = 0.30836 + 1.43712I
b = 0.66590 + 1.54507I
5.38391 + 10.31740I 5.41022 7.34778I
u = 0.578322 + 0.876148I
a = 0.869193 + 0.857447I
b = 0.18633 + 1.46072I
5.31272 + 4.64447I 4.44340 2.64217I
u = 0.578322 0.876148I
a = 0.869193 0.857447I
b = 0.18633 1.46072I
5.31272 4.64447I 4.44340 + 2.64217I
u = 0.217481 + 0.592732I
a = 0.47227 + 1.50811I
b = 0.203575 + 0.996171I
0.50766 2.36838I 7.45824 + 4.04010I
u = 0.217481 0.592732I
a = 0.47227 1.50811I
b = 0.203575 0.996171I
0.50766 + 2.36838I 7.45824 4.04010I
u = 1.39667
a = 1.16562
b = 1.59448
6.42671 13.8540
u = 1.384810 + 0.218261I
a = 0.413538 0.720270I
b = 0.78536 1.50062I
4.59888 + 5.31561I 16.0697 5.0195I
u = 1.384810 0.218261I
a = 0.413538 + 0.720270I
b = 0.78536 + 1.50062I
4.59888 5.31561I 16.0697 + 5.0195I
u = 1.48477 + 0.03326I
a = 0.374186 + 0.661888I
b = 0.159333 + 0.652088I
7.28530 0.33372I 13.77762 + 1.31768I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.48477 0.03326I
a = 0.374186 0.661888I
b = 0.159333 0.652088I
7.28530 + 0.33372I 13.77762 1.31768I
u = 0.471433 + 0.149281I
a = 1.189440 + 0.539880I
b = 0.190619 0.017488I
0.951255 0.232345I 11.11372 + 2.61454I
u = 0.471433 0.149281I
a = 1.189440 0.539880I
b = 0.190619 + 0.017488I
0.951255 + 0.232345I 11.11372 2.61454I
u = 1.54560 + 0.31071I
a = 0.806991 + 0.667934I
b = 1.09400 + 1.47232I
1.4014 + 14.5984I 9.03391 7.72929I
u = 1.54560 0.31071I
a = 0.806991 0.667934I
b = 1.09400 1.47232I
1.4014 14.5984I 9.03391 + 7.72929I
u = 1.80224
a = 0.238089
b = 0.620201
15.4721 27.5320
6
II.
I
u
2
= h−u
13
a+u
13
+· · ·a+1, u
13
a2u
13
+· · ·+a+7, u
14
u
13
+· · ·3u1i
(i) Arc colorings
a
8
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
5
=
a
u
13
a u
13
+ ··· + a 1
a
4
=
a
u
13
a u
13
+ ··· + a 1
a
2
=
2u
13
a u
12
a + ··· + a 2
2u
13
14u
11
+ ··· u 1
a
9
=
u
13
a + u
13
+ ··· + u + 2
u
13
a + u
13
+ ··· + 8u + 3
a
7
=
u
u
a
11
=
u
2
+ 1
u
2
a
6
=
u
3
+ 2u
u
3
+ u
a
3
=
u
13
a u
12
+ ··· + 2a 2
u
13
a u
12
+ ··· + a 1
a
10
=
u
4
+ 3u
2
1
u
4
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 11u
13
10u
12
72u
11
+ 49u
10
+ 176u
9
43u
8
211u
7
87u
6
+
135u
5
+ 125u
4
27u
3
12u
2
25u 14
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
28
4u
27
+ ··· + 82u 11
c
2
(u
14
6u
13
+ ··· 10u + 4)
2
c
4
, c
9
u
28
2u
27
+ ··· 264u + 24
c
5
, c
8
u
28
u
27
+ ··· 11u 1
c
6
, c
7
, c
10
c
11
, c
12
(u
14
+ u
13
+ ··· + 3u 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
y
28
+ 24y
27
+ ··· + 3132y + 121
c
2
(y
14
4y
13
+ ··· 188y + 16)
2
c
4
, c
9
y
28
18y
27
+ ··· 12000y + 576
c
5
, c
8
y
28
+ y
27
+ ··· 47y + 1
c
6
, c
7
, c
10
c
11
, c
12
(y
14
15y
13
+ ··· + 3y + 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.543841 + 0.788845I
a = 0.786499 1.127240I
b = 0.15757 1.50904I
6.74935 + 2.61367I 3.08817 3.10085I
u = 0.543841 + 0.788845I
a = 0.59080 + 1.44573I
b = 0.57036 + 1.40275I
6.74935 + 2.61367I 3.08817 3.10085I
u = 0.543841 0.788845I
a = 0.786499 + 1.127240I
b = 0.15757 + 1.50904I
6.74935 2.61367I 3.08817 + 3.10085I
u = 0.543841 0.788845I
a = 0.59080 1.44573I
b = 0.57036 1.40275I
6.74935 2.61367I 3.08817 + 3.10085I
u = 1.10803
a = 0.948288
b = 0.313019
1.64992 5.91590
u = 1.10803
a = 0.875781
b = 0.967676
1.64992 5.91590
u = 1.315420 + 0.077239I
a = 1.053540 0.890197I
b = 0.734783 1.046780I
2.09644 + 4.46056I 6.21772 5.02110I
u = 1.315420 + 0.077239I
a = 0.461982 0.077443I
b = 1.17028 1.69999I
2.09644 + 4.46056I 6.21772 5.02110I
u = 1.315420 0.077239I
a = 1.053540 + 0.890197I
b = 0.734783 + 1.046780I
2.09644 4.46056I 6.21772 + 5.02110I
u = 1.315420 0.077239I
a = 0.461982 + 0.077443I
b = 1.17028 + 1.69999I
2.09644 4.46056I 6.21772 + 5.02110I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.45797 + 0.12777I
a = 0.697357 + 0.508441I
b = 1.08158 + 1.81362I
5.60858 6.11443I 13.6408 + 6.9717I
u = 1.45797 + 0.12777I
a = 0.139548 1.280800I
b = 0.085041 0.349273I
5.60858 6.11443I 13.6408 + 6.9717I
u = 1.45797 0.12777I
a = 0.697357 0.508441I
b = 1.08158 1.81362I
5.60858 + 6.11443I 13.6408 6.9717I
u = 1.45797 0.12777I
a = 0.139548 + 1.280800I
b = 0.085041 + 0.349273I
5.60858 + 6.11443I 13.6408 6.9717I
u = 0.019410 + 0.530789I
a = 0.270655 + 0.346124I
b = 1.106740 + 0.564246I
1.71604 2.54798I 1.07278 + 1.43352I
u = 0.019410 + 0.530789I
a = 1.01173 + 2.29513I
b = 0.289802 + 1.068640I
1.71604 2.54798I 1.07278 + 1.43352I
u = 0.019410 0.530789I
a = 0.270655 0.346124I
b = 1.106740 0.564246I
1.71604 + 2.54798I 1.07278 1.43352I
u = 0.019410 0.530789I
a = 1.01173 2.29513I
b = 0.289802 1.068640I
1.71604 + 2.54798I 1.07278 1.43352I
u = 0.357381 + 0.324231I
a = 0.75149 2.13461I
b = 0.39490 1.51758I
0.35035 + 4.37070I 10.2424 10.7977I
u = 0.357381 + 0.324231I
a = 1.29088 + 2.35828I
b = 0.049630 0.292724I
0.35035 + 4.37070I 10.2424 10.7977I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.357381 0.324231I
a = 0.75149 + 2.13461I
b = 0.39490 + 1.51758I
0.35035 4.37070I 10.2424 + 10.7977I
u = 0.357381 0.324231I
a = 1.29088 2.35828I
b = 0.049630 + 0.292724I
0.35035 4.37070I 10.2424 + 10.7977I
u = 1.54231 + 0.28303I
a = 0.901435 0.599841I
b = 0.93554 1.19334I
0.04950 6.56214I 6.38364 + 4.80522I
u = 1.54231 + 0.28303I
a = 0.669860 + 0.302514I
b = 0.29812 + 1.50281I
0.04950 6.56214I 6.38364 + 4.80522I
u = 1.54231 0.28303I
a = 0.901435 + 0.599841I
b = 0.93554 + 1.19334I
0.04950 + 6.56214I 6.38364 4.80522I
u = 1.54231 0.28303I
a = 0.669860 0.302514I
b = 0.29812 1.50281I
0.04950 + 6.56214I 6.38364 4.80522I
u = 1.63650
a = 1.21145
b = 0.967540
10.3421 10.2070
u = 1.63650
a = 0.352250
b = 0.800198
10.3421 10.2070
12
III. I
u
3
= hu
6
4u
4
+ 2u
3
+ 4u
2
+ b 3u + 1, u
5
u
4
+ 4u
3
+ 2u
2
+ a
5u 1, u
7
+ 2u
6
3u
5
6u
4
+ 3u
3
+ 5u
2
+ 1i
(i) Arc colorings
a
8
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
5
=
u
5
+ u
4
4u
3
2u
2
+ 5u + 1
u
6
+ 4u
4
2u
3
4u
2
+ 3u 1
a
4
=
u
5
+ u
4
4u
3
2u
2
+ 5u + 1
2u
6
u
5
+ 8u
4
8u
2
+ 3u 2
a
2
=
u
6
+ u
5
4u
4
3u
3
+ 5u
2
+ 3u 1
u
5
+ 3u
3
u 1
a
9
=
u
2
2
u
6
u
5
+ 4u
4
+ 2u
3
4u
2
u 1
a
7
=
u
u
a
11
=
u
2
+ 1
u
2
a
6
=
u
3
+ 2u
u
3
+ u
a
3
=
u
5
+ u
4
4u
3
2u
2
+ 5u + 2
u
3
+ 2u
a
10
=
u
4
3u
2
+ 1
u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
6
+ u
5
+ 15u
4
12u
3
20u
2
+ 17u 7
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
7
+ u
6
+ 4u
5
+ 5u
4
+ 7u
3
+ 6u
2
+ 4u + 1
c
2
u
7
+ 8u
6
+ 31u
5
+ 75u
4
+ 122u
3
+ 133u
2
+ 90u + 29
c
4
, c
9
u
7
u
6
+ u
4
+ u
3
2u
2
+ 1
c
5
, c
8
u
7
2u
5
u
4
+ u
3
u 1
c
6
, c
7
u
7
2u
6
3u
5
+ 6u
4
+ 3u
3
5u
2
1
c
10
, c
11
, c
12
u
7
+ 2u
6
3u
5
6u
4
+ 3u
3
+ 5u
2
+ 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
y
7
+ 7y
6
+ 20y
5
+ 27y
4
+ 19y
3
+ 10y
2
+ 4y 1
c
2
y
7
2y
6
+ 5y
5
9y
4
+ 50y
3
79y
2
+ 386y 841
c
4
, c
9
y
7
y
6
+ 4y
5
5y
4
+ 7y
3
6y
2
+ 4y 1
c
5
, c
8
y
7
4y
6
+ 6y
5
7y
4
+ 5y
3
4y
2
+ y 1
c
6
, c
7
, c
10
c
11
, c
12
y
7
10y
6
+ 39y
5
74y
4
+ 65y
3
13y
2
10y 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.278170 + 0.302690I
a = 0.690513 + 0.118128I
b = 0.587538 0.609722I
3.01119 + 1.09708I 11.40523 3.58425I
u = 1.278170 0.302690I
a = 0.690513 0.118128I
b = 0.587538 + 0.609722I
3.01119 1.09708I 11.40523 + 3.58425I
u = 1.399450 + 0.156175I
a = 0.465734 0.770245I
b = 0.41431 1.55213I
3.71133 + 5.67264I 7.64975 7.54460I
u = 1.399450 0.156175I
a = 0.465734 + 0.770245I
b = 0.41431 + 1.55213I
3.71133 5.67264I 7.64975 + 7.54460I
u = 0.037900 + 0.397504I
a = 1.60254 + 2.17123I
b = 0.126346 + 1.154250I
1.16830 3.69824I 2.64032 + 6.74904I
u = 0.037900 0.397504I
a = 1.60254 2.17123I
b = 0.126346 1.154250I
1.16830 + 3.69824I 2.64032 6.74904I
u = 1.83325
a = 0.345358
b = 0.400851
15.2105 3.39060
16
IV. I
u
4
= hb 1, a
2
+ a + u 2, u
2
u 1i
(i) Arc colorings
a
8
=
0
u
a
12
=
1
0
a
1
=
1
u + 1
a
5
=
a
1
a
4
=
a
au + a + 1
a
2
=
a + 1
au + a + u + 2
a
9
=
au 2u + 1
3au a 3u 1
a
7
=
u
u
a
11
=
u
u 1
a
6
=
1
u 1
a
3
=
a + 1
au + a + u + 2
a
10
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7u 22
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
(u 1)
4
c
2
u
4
c
4
, c
5
, c
8
c
9
u
4
+ u
3
3u
2
u + 1
c
6
, c
7
(u
2
+ u 1)
2
c
10
, c
11
, c
12
(u
2
u 1)
2
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
(y 1)
4
c
2
y
4
c
4
, c
5
, c
8
c
9
y
4
7y
3
+ 13y
2
7y + 1
c
6
, c
7
, c
10
c
11
, c
12
(y
2
3y + 1)
2
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.19353
b = 1.00000
2.63189 17.6740
u = 0.618034
a = 2.19353
b = 1.00000
2.63189 17.6740
u = 1.61803
a = 1.29496
b = 1.00000
10.5276 33.3260
u = 1.61803
a = 0.294963
b = 1.00000
10.5276 33.3260
20
V. I
u
5
= hb 1, a, u + 1i
(i) Arc colorings
a
8
=
0
1
a
12
=
1
0
a
1
=
1
1
a
5
=
0
1
a
4
=
0
1
a
2
=
1
2
a
9
=
1
1
a
7
=
1
1
a
11
=
0
1
a
6
=
1
0
a
3
=
1
1
a
10
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 18
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
u + 1
c
4
, c
9
u
c
5
, c
6
, c
7
c
8
, c
10
, c
11
c
12
u 1
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
c
8
, c
10
, c
11
c
12
y 1
c
4
, c
9
y
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 1.00000
4.93480 18.0000
24
VI. I
u
6
= h−u
2
+ b + 2, u
2
+ 3a 2u + 1, u
3
+ 2u
2
u 3i
(i) Arc colorings
a
8
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
5
=
1
3
u
2
+
2
3
u
1
3
u
2
2
a
4
=
1
3
u
2
+
2
3
u
1
3
u
2
+ u 2
a
2
=
2
3
u
2
1
3
u +
5
3
1
a
9
=
4
3
u
2
2
3
u +
7
3
u
2
+ 2
a
7
=
u
u
a
11
=
u
2
+ 1
u
2
a
6
=
2u
2
+ u 3
2u
2
3
a
3
=
2
3
u
2
1
3
u +
8
3
2u
2
u + 4
a
10
=
2u
2
u + 5
3u
2
u + 6
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
3
+ u 1
c
2
u
3
+ 2u
2
u 3
c
4
, c
9
(u + 1)
3
c
5
, c
8
u
3
2u
2
+ u + 1
c
6
, c
7
, c
10
c
11
, c
12
u
3
2u
2
u + 3
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
y
3
+ 2y
2
+ y 1
c
2
, c
6
, c
7
c
10
, c
11
, c
12
y
3
6y
2
+ 13y 9
c
4
, c
9
(y 1)
3
c
5
, c
8
y
3
2y
2
+ 5y 1
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.14790
a = 0.871157
b = 0.682328
1.64493 6.00000
u = 1.57395 + 0.36899I
a = 0.602245 0.141188I
b = 0.341164 1.161540I
1.64493 6.00000
u = 1.57395 0.36899I
a = 0.602245 + 0.141188I
b = 0.341164 + 1.161540I
1.64493 6.00000
28
VII. I
u
7
= hb, a 1, u 1i
(i) Arc colorings
a
8
=
0
1
a
12
=
1
0
a
1
=
1
1
a
5
=
1
0
a
4
=
1
1
a
2
=
1
1
a
9
=
1
0
a
7
=
1
1
a
11
=
0
1
a
6
=
1
0
a
3
=
2
1
a
10
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
29
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
c
2
, c
3
u 1
c
4
, c
6
, c
7
c
8
, c
9
, c
10
c
11
, c
12
u + 1
30
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
c
2
, c
3
, c
4
c
6
, c
7
, c
8
c
9
, c
10
, c
11
c
12
y 1
31
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
1.64493 6.00000
32
VIII. I
u
8
= hb + 1, a 1, u 1i
(i) Arc colorings
a
8
=
0
1
a
12
=
1
0
a
1
=
1
1
a
5
=
1
1
a
4
=
1
0
a
2
=
0
1
a
9
=
0
1
a
7
=
1
1
a
11
=
0
1
a
6
=
1
0
a
3
=
1
0
a
10
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
33
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
u 1
c
3
, c
8
u
c
4
, c
5
, c
6
c
7
, c
9
, c
10
c
11
, c
12
u + 1
34
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
7
c
9
, c
10
, c
11
c
12
y 1
c
3
, c
8
y
35
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
1.64493 6.00000
36
IX. I
v
1
= ha, b 1, v + 1i
(i) Arc colorings
a
8
=
1
0
a
12
=
1
0
a
1
=
1
0
a
5
=
0
1
a
4
=
1
1
a
2
=
0
1
a
9
=
1
1
a
7
=
1
0
a
11
=
1
0
a
6
=
1
0
a
3
=
0
1
a
10
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
37
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
8
, c
9
u + 1
c
2
, c
6
, c
7
c
10
, c
11
, c
12
u
38
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
8
, c
9
y 1
c
2
, c
6
, c
7
c
10
, c
11
, c
12
y
39
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
1.64493 6.00000
40
X. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
3
u(u 1)
5
(u + 1)
2
(u
3
+ u 1)(u
7
+ u
6
+ ··· + 4u + 1)
· (u
16
+ u
15
+ ··· + 13u + 1)(u
28
4u
27
+ ··· + 82u 11)
c
2
u
5
(u 1)
2
(u + 1)(u
3
+ 2u
2
u 3)
· (u
7
+ 8u
6
+ 31u
5
+ 75u
4
+ 122u
3
+ 133u
2
+ 90u + 29)
· ((u
14
6u
13
+ ··· 10u + 4)
2
)(u
16
+ 10u
15
+ ··· 5u 3)
c
4
, c
9
u(u + 1)
6
(u
4
+ u
3
3u
2
u + 1)(u
7
u
6
+ u
4
+ u
3
2u
2
+ 1)
· (u
16
5u
15
+ ··· 17u + 5)(u
28
2u
27
+ ··· 264u + 24)
c
5
, c
8
u(u 1)(u + 1)
2
(u
3
2u
2
+ u + 1)(u
4
+ u
3
3u
2
u + 1)
· (u
7
2u
5
u
4
+ u
3
u 1)(u
16
+ 2u
15
+ ··· 2u 1)
· (u
28
u
27
+ ··· 11u 1)
c
6
, c
7
u(u 1)(u + 1)
2
(u
2
+ u 1)
2
(u
3
2u
2
u + 3)
· (u
7
2u
6
+ ··· 5u
2
1)(u
14
+ u
13
+ ··· + 3u 1)
2
· (u
16
2u
15
+ ··· + 13u + 3)
c
10
, c
11
, c
12
u(u 1)(u + 1)
2
(u
2
u 1)
2
(u
3
2u
2
u + 3)
· (u
7
+ 2u
6
+ ··· + 5u
2
+ 1)(u
14
+ u
13
+ ··· + 3u 1)
2
· (u
16
2u
15
+ ··· + 13u + 3)
41
XI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
y(y 1)
7
(y
3
+ 2y
2
+ y 1)
· (y
7
+ 7y
6
+ 20y
5
+ 27y
4
+ 19y
3
+ 10y
2
+ 4y 1)
· (y
16
+ 13y
15
+ ··· 49y + 1)(y
28
+ 24y
27
+ ··· + 3132y + 121)
c
2
y
5
(y 1)
3
(y
3
6y
2
+ 13y 9)
· (y
7
2y
6
+ 5y
5
9y
4
+ 50y
3
79y
2
+ 386y 841)
· ((y
14
4y
13
+ ··· 188y + 16)
2
)(y
16
4y
14
+ ··· + 113y + 9)
c
4
, c
9
y(y 1)
6
(y
4
7y
3
+ 13y
2
7y + 1)
· (y
7
y
6
+ 4y
5
5y
4
+ 7y
3
6y
2
+ 4y 1)
· (y
16
11y
15
+ ··· 199y + 25)(y
28
18y
27
+ ··· 12000y + 576)
c
5
, c
8
y(y 1)
3
(y
3
2y
2
+ 5y 1)(y
4
7y
3
+ 13y
2
7y + 1)
· (y
7
4y
6
+ ··· + y 1)(y
16
10y
15
+ ··· 18y + 1)
· (y
28
+ y
27
+ ··· 47y + 1)
c
6
, c
7
, c
10
c
11
, c
12
y(y 1)
3
(y
2
3y + 1)
2
(y
3
6y
2
+ 13y 9)
· (y
7
10y
6
+ 39y
5
74y
4
+ 65y
3
13y
2
10y 1)
· ((y
14
15y
13
+ ··· + 3y + 1)
2
)(y
16
16y
15
+ ··· 43y + 9)
42