12n
0667
(K12n
0667
)
A knot diagram
1
Linearized knot diagam
4 5 6 8 9 12 11 2 3 6 7 8
Solving Sequence
6,12 4,7
3 11 8 1 10 9 5 2
c
6
c
3
c
11
c
7
c
12
c
10
c
9
c
5
c
2
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−3u
20
26u
19
+ ··· + 7b + 97, 83u
20
325u
19
+ ··· + 63a + 558, u
21
+ 5u
20
+ ··· 72u 9i
I
u
2
= h−3u
14
a + 5u
14
+ ··· + a + 24, u
14
a + 2u
13
a + ··· + 3a + 4, u
15
2u
14
+ ··· 4u + 1i
I
u
3
= h−u
6
2u
5
5u
4
6u
3
6u
2
+ b 4u 1, u
8
+ 2u
7
+ 7u
6
+ 10u
5
+ 15u
4
+ 14u
3
+ 9u
2
+ a + 5u 1,
u
9
+ 2u
8
+ 7u
7
+ 10u
6
+ 16u
5
+ 16u
4
+ 13u
3
+ 9u
2
+ 2u + 1i
I
u
4
= hb + 1, 2u
2
a + a
2
2au + 3a + u 1, u
3
u
2
+ 2u 1i
I
v
1
= ha, b + 1, v + 1i
* 5 irreducible components of dim
C
= 0, with total 67 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−3u
20
26u
19
+ · · · + 7b + 97, 83u
20
325u
19
+ · · · + 63a +
558, u
21
+ 5u
20
+ · · · 72u 9i
(i) Arc colorings
a
6
=
1
0
a
12
=
0
u
a
4
=
83
63
u
20
+
325
63
u
19
+ ··· 66u
62
7
3
7
u
20
+
26
7
u
19
+ ··· 95u
97
7
a
7
=
1
u
2
a
3
=
110
63
u
20
+
559
63
u
19
+ ··· 161u
159
7
3
7
u
20
+
26
7
u
19
+ ··· 95u
97
7
a
11
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
u
5
2u
3
u
u
7
3u
5
2u
3
+ u
a
10
=
u
3
+ 2u
u
3
+ u
a
9
=
83
63
u
20
+
325
63
u
19
+ ··· 86u
90
7
5
7
u
20
+
20
7
u
19
+ ··· 52u
52
7
a
5
=
97
63
u
20
458
63
u
19
+ ··· + 111u +
111
7
1
7
u
20
10
7
u
19
+ ··· + 103u +
110
7
a
2
=
52
63
u
20
215
63
u
19
+ ··· + 39u +
38
7
2
7
u
20
+
1
7
u
19
+ ··· + 36u +
38
7
(ii) Obstruction class = 1
(iii) Cusp Shapes =
4
7
u
20
+
51
7
u
19
+ ··· 324u
456
7
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
21
+ 2u
20
+ ··· + 8u + 1
c
2
u
21
+ 15u
20
+ ··· + 63u + 9
c
4
, c
9
u
21
2u
20
+ ··· 11u
2
+ 1
c
5
, c
8
u
21
u
20
+ ··· u 1
c
6
, c
7
, c
11
u
21
+ 5u
20
+ ··· 72u 9
c
10
, c
12
u
21
5u
20
+ ··· 2988u 1413
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
y
21
+ 30y
20
+ ··· + 6y 1
c
2
y
21
13y
20
+ ··· 1377y 81
c
4
, c
9
y
21
22y
20
+ ··· + 22y 1
c
5
, c
8
y
21
11y
20
+ ··· + 21y 1
c
6
, c
7
, c
11
y
21
+ 23y
20
+ ··· + 324y 81
c
10
, c
12
y
21
+ 19y
20
+ ··· 3839724y 1996569
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.834623 + 0.573705I
a = 1.005930 + 0.264258I
b = 0.62121 1.82385I
6.40877 + 10.26430I 4.52348 6.93928I
u = 0.834623 0.573705I
a = 1.005930 0.264258I
b = 0.62121 + 1.82385I
6.40877 10.26430I 4.52348 + 6.93928I
u = 0.847213 + 0.586710I
a = 0.922945 + 0.173773I
b = 0.16137 + 1.79856I
6.42391 4.68256I 3.99466 + 2.17560I
u = 0.847213 0.586710I
a = 0.922945 0.173773I
b = 0.16137 1.79856I
6.42391 + 4.68256I 3.99466 2.17560I
u = 0.825151
a = 0.722716
b = 0.926404
5.68389 17.0230
u = 0.150569 + 1.281090I
a = 0.434742 0.402686I
b = 0.074569 + 0.138439I
3.22602 + 2.41816I 3.53897 1.93549I
u = 0.150569 1.281090I
a = 0.434742 + 0.402686I
b = 0.074569 0.138439I
3.22602 2.41816I 3.53897 + 1.93549I
u = 0.323088 + 0.617615I
a = 0.358624 0.512504I
b = 0.096498 + 0.850760I
0.52795 + 2.17494I 5.93194 4.33334I
u = 0.323088 0.617615I
a = 0.358624 + 0.512504I
b = 0.096498 0.850760I
0.52795 2.17494I 5.93194 + 4.33334I
u = 0.373837 + 1.314800I
a = 0.363936 + 0.564961I
b = 0.998750 + 0.204857I
1.57111 4.30895I 11.00324 + 1.55396I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.373837 1.314800I
a = 0.363936 0.564961I
b = 0.998750 0.204857I
1.57111 + 4.30895I 11.00324 1.55396I
u = 0.027283 + 1.412760I
a = 0.78061 + 1.55576I
b = 1.109230 0.677694I
3.18953 + 0.20531I 5.89178 + 0.57061I
u = 0.027283 1.412760I
a = 0.78061 1.55576I
b = 1.109230 + 0.677694I
3.18953 0.20531I 5.89178 0.57061I
u = 0.437416 + 0.103332I
a = 0.929988 0.551312I
b = 0.189823 + 0.028334I
0.974855 + 0.275619I 10.86571 2.54923I
u = 0.437416 0.103332I
a = 0.929988 + 0.551312I
b = 0.189823 0.028334I
0.974855 0.275619I 10.86571 + 2.54923I
u = 0.09149 + 1.57120I
a = 0.26719 1.73552I
b = 0.33826 + 1.86261I
7.94844 + 3.68537I 6.18348 + 2.45338I
u = 0.09149 1.57120I
a = 0.26719 + 1.73552I
b = 0.33826 1.86261I
7.94844 3.68537I 6.18348 2.45338I
u = 0.28888 + 1.56597I
a = 0.45254 + 2.00394I
b = 1.01317 2.01561I
13.4087 + 14.4061I 2.12525 6.98840I
u = 0.28888 1.56597I
a = 0.45254 2.00394I
b = 1.01317 + 2.01561I
13.4087 14.4061I 2.12525 + 6.98840I
u = 0.28585 + 1.59217I
a = 0.77487 1.52631I
b = 0.35107 + 2.01142I
13.60260 0.45994I 1.43013 + 1.46856I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.28585 1.59217I
a = 0.77487 + 1.52631I
b = 0.35107 2.01142I
13.60260 + 0.45994I 1.43013 1.46856I
7
II. I
u
2
= h−3u
14
a + 5u
14
+ · · · + a + 24, u
14
a + 2u
13
a + · · · + 3a + 4, u
15
2u
14
+ · · · 4u + 1i
(i) Arc colorings
a
6
=
1
0
a
12
=
0
u
a
4
=
a
3
14
u
14
a
5
14
u
14
+ ···
1
14
a
12
7
a
7
=
1
u
2
a
3
=
0.214286au
14
0.357143u
14
+ ··· + 0.928571a 1.71429
3
14
u
14
a
5
14
u
14
+ ···
1
14
a
12
7
a
11
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
u
5
2u
3
u
u
7
3u
5
2u
3
+ u
a
10
=
u
3
+ 2u
u
3
+ u
a
9
=
10
7
u
14
a +
9
7
u
14
+ ···
8
7
a
10
7
5
14
u
14
a +
1
14
u
14
+ ···
25
14
a
6
7
a
5
=
1
14
u
14
a
5
7
u
14
+ ··· +
6
7
a +
1
14
0.142857au
14
0.928571u
14
+ ··· + 0.214286a 0.357143
a
2
=
5
14
u
14
a
3
7
u
14
+ ··· +
12
7
a +
9
14
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 11u
14
16u
13
+ 97u
12
120u
11
+ 326u
10
337u
9
+ 511u
8
400u
7
+ 342u
6
95u
5
+ 10u
4
+ 150u
3
84u
2
+ 55u 19
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
30
7u
29
+ ··· 676u 329
c
2
(u
15
7u
14
+ ··· + 28u 8)
2
c
4
, c
9
u
30
14u
28
+ ··· 641u + 151
c
5
, c
8
u
30
+ 9u
26
+ ··· u 1
c
6
, c
7
, c
11
(u
15
2u
14
+ ··· 4u + 1)
2
c
10
, c
12
(u
15
+ 2u
14
+ ··· 16u + 5)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
y
30
+ 33y
29
+ ··· + 1028130y + 108241
c
2
(y
15
7y
14
+ ··· + 528y 64)
2
c
4
, c
9
y
30
28y
29
+ ··· + 125773y + 22801
c
5
, c
8
y
30
+ 18y
28
+ ··· 35y + 1
c
6
, c
7
, c
11
(y
15
+ 16y
14
+ ··· 4y 1)
2
c
10
, c
12
(y
15
+ 16y
14
+ ··· 344y 25)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.783022 + 0.548748I
a = 0.815000 0.070479I
b = 0.23196 1.72434I
7.57107 2.60312I 2.84235 + 2.92184I
u = 0.783022 + 0.548748I
a = 1.150630 0.405666I
b = 0.61243 + 1.61879I
7.57107 2.60312I 2.84235 + 2.92184I
u = 0.783022 0.548748I
a = 0.815000 + 0.070479I
b = 0.23196 + 1.72434I
7.57107 + 2.60312I 2.84235 2.92184I
u = 0.783022 0.548748I
a = 1.150630 + 0.405666I
b = 0.61243 1.61879I
7.57107 + 2.60312I 2.84235 2.92184I
u = 0.216855 + 1.221530I
a = 0.741221 0.405618I
b = 0.661072 + 0.460812I
1.58567 + 3.38986I 3.26125 8.75376I
u = 0.216855 + 1.221530I
a = 0.660981 + 1.010040I
b = 0.913612 + 0.021844I
1.58567 + 3.38986I 3.26125 8.75376I
u = 0.216855 1.221530I
a = 0.741221 + 0.405618I
b = 0.661072 0.460812I
1.58567 3.38986I 3.26125 + 8.75376I
u = 0.216855 1.221530I
a = 0.660981 1.010040I
b = 0.913612 0.021844I
1.58567 3.38986I 3.26125 + 8.75376I
u = 0.699136
a = 0.498930
b = 0.445090
2.08475 3.31340
u = 0.699136
a = 1.87307
b = 0.972659
2.08475 3.31340
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.061637 + 0.608365I
a = 0.934694 + 0.293027I
b = 0.986562 + 0.556921I
1.61379 + 2.57496I 1.10179 1.01110I
u = 0.061637 + 0.608365I
a = 0.94855 1.35297I
b = 0.329324 + 1.042070I
1.61379 + 2.57496I 1.10179 1.01110I
u = 0.061637 0.608365I
a = 0.934694 0.293027I
b = 0.986562 0.556921I
1.61379 2.57496I 1.10179 + 1.01110I
u = 0.061637 0.608365I
a = 0.94855 + 1.35297I
b = 0.329324 1.042070I
1.61379 2.57496I 1.10179 + 1.01110I
u = 0.09920 + 1.46553I
a = 0.395823 0.646191I
b = 0.609648 + 0.043969I
6.22877 5.97807I 2.99155 + 7.20850I
u = 0.09920 + 1.46553I
a = 0.26994 + 2.77190I
b = 0.31360 2.40695I
6.22877 5.97807I 2.99155 + 7.20850I
u = 0.09920 1.46553I
a = 0.395823 + 0.646191I
b = 0.609648 0.043969I
6.22877 + 5.97807I 2.99155 7.20850I
u = 0.09920 1.46553I
a = 0.26994 2.77190I
b = 0.31360 + 2.40695I
6.22877 + 5.97807I 2.99155 7.20850I
u = 0.01760 + 1.52899I
a = 1.250130 0.500701I
b = 2.00715 + 0.63605I
8.69622 + 2.65996I 1.50438 2.01476I
u = 0.01760 + 1.52899I
a = 0.23286 2.06811I
b = 0.18397 + 1.61289I
8.69622 + 2.65996I 1.50438 2.01476I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.01760 1.52899I
a = 1.250130 + 0.500701I
b = 2.00715 0.63605I
8.69622 2.65996I 1.50438 + 2.01476I
u = 0.01760 1.52899I
a = 0.23286 + 2.06811I
b = 0.18397 1.61289I
8.69622 2.65996I 1.50438 + 2.01476I
u = 0.367791 + 0.287869I
a = 1.078570 + 0.747772I
b = 0.34613 1.55473I
0.39798 4.38767I 9.5578 + 11.0682I
u = 0.367791 + 0.287869I
a = 1.52156 2.49296I
b = 0.006820 0.312135I
0.39798 4.38767I 9.5578 + 11.0682I
u = 0.367791 0.287869I
a = 1.078570 0.747772I
b = 0.34613 + 1.55473I
0.39798 + 4.38767I 9.5578 11.0682I
u = 0.367791 0.287869I
a = 1.52156 + 2.49296I
b = 0.006820 + 0.312135I
0.39798 + 4.38767I 9.5578 11.0682I
u = 0.27238 + 1.54795I
a = 0.97464 + 1.65279I
b = 0.05742 2.01595I
14.4273 6.4879I 0.59296 + 3.62205I
u = 0.27238 + 1.54795I
a = 0.45074 1.92343I
b = 0.99248 + 1.70658I
14.4273 6.4879I 0.59296 + 3.62205I
u = 0.27238 1.54795I
a = 0.97464 1.65279I
b = 0.05742 + 2.01595I
14.4273 + 6.4879I 0.59296 3.62205I
u = 0.27238 1.54795I
a = 0.45074 + 1.92343I
b = 0.99248 1.70658I
14.4273 + 6.4879I 0.59296 3.62205I
13
III. I
u
3
= h−u
6
2u
5
5u
4
6u
3
6u
2
+ b 4u 1, u
8
+ 2u
7
+ · · · + a
1, u
9
+ 2u
8
+ · · · + 2u + 1i
(i) Arc colorings
a
6
=
1
0
a
12
=
0
u
a
4
=
u
8
2u
7
7u
6
10u
5
15u
4
14u
3
9u
2
5u + 1
u
6
+ 2u
5
+ 5u
4
+ 6u
3
+ 6u
2
+ 4u + 1
a
7
=
1
u
2
a
3
=
u
8
2u
7
6u
6
8u
5
10u
4
8u
3
3u
2
u + 2
u
6
+ 2u
5
+ 5u
4
+ 6u
3
+ 6u
2
+ 4u + 1
a
11
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
u
5
2u
3
u
u
7
3u
5
2u
3
+ u
a
10
=
u
3
+ 2u
u
3
+ u
a
9
=
u
7
2u
6
6u
5
8u
4
10u
3
9u
2
4u 3
u
8
2u
7
6u
6
8u
5
11u
4
9u
3
6u
2
3u
a
5
=
u
8
2u
7
7u
6
9u
5
14u
4
11u
3
7u
2
3u + 2
u
7
+ 2u
6
+ 6u
5
+ 8u
4
+ 10u
3
+ 8u
2
+ 4u + 1
a
2
=
u
8
2u
7
6u
6
10u
5
13u
4
16u
3
11u
2
9u 3
u
7
u
6
4u
5
3u
4
4u
3
2u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
8
4u
6
13u
5
32u
4
38u
3
40u
2
24u 8
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
9
+ 3u
8
+ 9u
7
+ 14u
6
+ 18u
5
+ 18u
4
+ 13u
3
+ 8u
2
+ 4u + 1
c
2
u
9
+ 12u
8
+ ··· + 401u + 89
c
4
, c
9
u
9
u
8
u
7
+ 2u
6
+ 2u
5
2u
4
u
3
+ 2u
2
1
c
5
, c
8
u
9
2u
7
u
6
+ 2u
5
+ 2u
4
2u
3
u
2
+ u + 1
c
6
, c
7
u
9
+ 2u
8
+ 7u
7
+ 10u
6
+ 16u
5
+ 16u
4
+ 13u
3
+ 9u
2
+ 2u + 1
c
10
, c
12
u
9
+ 2u
8
+ 3u
7
+ u
6
18u
5
20u
4
4u
3
11u
2
1
c
11
u
9
2u
8
+ 7u
7
10u
6
+ 16u
5
16u
4
+ 13u
3
9u
2
+ 2u 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
y
9
+ 9y
8
+ 33y
7
+ 46y
6
+ 14y
5
14y
4
3y
3
+ 4y
2
1
c
2
y
9
6y
8
+ ··· + 8789y 7921
c
4
, c
9
y
9
3y
8
+ 9y
7
14y
6
+ 18y
5
18y
4
+ 13y
3
8y
2
+ 4y 1
c
5
, c
8
y
9
4y
8
+ 8y
7
13y
6
+ 18y
5
18y
4
+ 14y
3
9y
2
+ 3y 1
c
6
, c
7
, c
11
y
9
+ 10y
8
+ 41y
7
+ 86y
6
+ 86y
5
+ 4y
4
75y
3
61y
2
14y 1
c
10
, c
12
y
9
+ 2y
8
31y
7
37y
6
+ 384y
5
230y
4
422y
3
161y
2
22y 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.942156
a = 0.835924
b = 0.693833
4.78668 6.85480
u = 0.025437 + 1.219490I
a = 0.848257 + 0.499627I
b = 0.174357 0.757557I
3.87432 3.77454I 1.17699 + 5.61151I
u = 0.025437 1.219490I
a = 0.848257 0.499627I
b = 0.174357 + 0.757557I
3.87432 + 3.77454I 1.17699 5.61151I
u = 0.465053 + 1.257920I
a = 0.128314 + 0.500319I
b = 0.628101 + 0.278164I
0.89563 + 5.00672I 5.11040 6.89072I
u = 0.465053 1.257920I
a = 0.128314 0.500319I
b = 0.628101 0.278164I
0.89563 5.00672I 5.11040 + 6.89072I
u = 0.05596 + 1.56008I
a = 0.27494 1.81410I
b = 0.58625 + 1.89814I
8.14041 + 4.21823I 1.16365 10.14642I
u = 0.05596 1.56008I
a = 0.27494 + 1.81410I
b = 0.58625 1.89814I
8.14041 4.21823I 1.16365 + 10.14642I
u = 0.033345 + 0.402052I
a = 2.07693 1.08799I
b = 0.113094 + 1.126000I
1.14384 + 3.68908I 2.12153 6.55211I
u = 0.033345 0.402052I
a = 2.07693 + 1.08799I
b = 0.113094 1.126000I
1.14384 3.68908I 2.12153 + 6.55211I
17
IV. I
u
4
= hb + 1, 2u
2
a + a
2
2au + 3a + u 1, u
3
u
2
+ 2u 1i
(i) Arc colorings
a
6
=
1
0
a
12
=
0
u
a
4
=
a
1
a
7
=
1
u
2
a
3
=
a 1
1
a
11
=
u
u
2
u + 1
a
8
=
u
2
+ 1
u
2
u + 1
a
1
=
1
0
a
10
=
u
2
+ 1
u
2
u + 1
a
9
=
2u
2
a au + 2a + u + 1
u
2
a au + u
2
+ a + 1
a
5
=
u
2
+ u 2
au 2
a
2
=
a 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
2
16
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
(u 1)
6
c
2
u
6
c
4
, c
5
, c
8
c
9
u
6
+ u
5
3u
4
3u
3
+ 3u
2
+ u 1
c
6
, c
7
(u
3
u
2
+ 2u 1)
2
c
10
, c
12
(u
3
u
2
+ 1)
2
c
11
(u
3
+ u
2
+ 2u + 1)
2
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
(y 1)
6
c
2
y
6
c
4
, c
5
, c
8
c
9
y
6
7y
5
+ 21y
4
31y
3
+ 21y
2
7y + 1
c
6
, c
7
, c
11
(y
3
+ 3y
2
+ 2y 1)
2
c
10
, c
12
(y
3
y
2
+ 2y 1)
2
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 1.153780 + 0.265134I
b = 1.00000
1.37919 2.82812I 7.68821 2.81140I
u = 0.215080 + 1.307140I
a = 0.398899 + 1.224590I
b = 1.00000
1.37919 2.82812I 7.68821 2.81140I
u = 0.215080 1.307140I
a = 1.153780 0.265134I
b = 1.00000
1.37919 + 2.82812I 7.68821 + 2.81140I
u = 0.215080 1.307140I
a = 0.398899 1.224590I
b = 1.00000
1.37919 + 2.82812I 7.68821 + 2.81140I
u = 0.569840
a = 0.161059
b = 1.00000
2.75839 17.6240
u = 0.569840
a = 2.67081
b = 1.00000
2.75839 17.6240
21
V. I
v
1
= ha, b + 1, v + 1i
(i) Arc colorings
a
6
=
1
0
a
12
=
1
0
a
4
=
0
1
a
7
=
1
0
a
3
=
1
1
a
11
=
1
0
a
8
=
1
0
a
1
=
1
0
a
10
=
1
0
a
9
=
2
1
a
5
=
1
1
a
2
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
8
, c
9
u + 1
c
2
, c
6
, c
7
c
10
, c
11
, c
12
u
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
8
, c
9
y 1
c
2
, c
6
, c
7
c
10
, c
11
, c
12
y
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
1.64493 6.00000
25
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
3
(u 1)
6
(u + 1)
· (u
9
+ 3u
8
+ 9u
7
+ 14u
6
+ 18u
5
+ 18u
4
+ 13u
3
+ 8u
2
+ 4u + 1)
· (u
21
+ 2u
20
+ ··· + 8u + 1)(u
30
7u
29
+ ··· 676u 329)
c
2
u
7
(u
9
+ 12u
8
+ ··· + 401u + 89)(u
15
7u
14
+ ··· + 28u 8)
2
· (u
21
+ 15u
20
+ ··· + 63u + 9)
c
4
, c
9
(u + 1)(u
6
+ u
5
3u
4
3u
3
+ 3u
2
+ u 1)
· (u
9
u
8
u
7
+ 2u
6
+ 2u
5
2u
4
u
3
+ 2u
2
1)
· (u
21
2u
20
+ ··· 11u
2
+ 1)(u
30
14u
28
+ ··· 641u + 151)
c
5
, c
8
(u + 1)(u
6
+ u
5
3u
4
3u
3
+ 3u
2
+ u 1)
· (u
9
2u
7
+ ··· + u + 1)(u
21
u
20
+ ··· u 1)
· (u
30
+ 9u
26
+ ··· u 1)
c
6
, c
7
u(u
3
u
2
+ 2u 1)
2
· (u
9
+ 2u
8
+ 7u
7
+ 10u
6
+ 16u
5
+ 16u
4
+ 13u
3
+ 9u
2
+ 2u + 1)
· ((u
15
2u
14
+ ··· 4u + 1)
2
)(u
21
+ 5u
20
+ ··· 72u 9)
c
10
, c
12
u(u
3
u
2
+ 1)
2
(u
9
+ 2u
8
+ 3u
7
+ u
6
18u
5
20u
4
4u
3
11u
2
1)
· ((u
15
+ 2u
14
+ ··· 16u + 5)
2
)(u
21
5u
20
+ ··· 2988u 1413)
c
11
u(u
3
+ u
2
+ 2u + 1)
2
· (u
9
2u
8
+ 7u
7
10u
6
+ 16u
5
16u
4
+ 13u
3
9u
2
+ 2u 1)
· ((u
15
2u
14
+ ··· 4u + 1)
2
)(u
21
+ 5u
20
+ ··· 72u 9)
26
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
(y 1)
7
(y
9
+ 9y
8
+ 33y
7
+ 46y
6
+ 14y
5
14y
4
3y
3
+ 4y
2
1)
· (y
21
+ 30y
20
+ ··· + 6y 1)(y
30
+ 33y
29
+ ··· + 1028130y + 108241)
c
2
y
7
(y
9
6y
8
+ ··· + 8789y 7921)(y
15
7y
14
+ ··· + 528y 64)
2
· (y
21
13y
20
+ ··· 1377y 81)
c
4
, c
9
(y 1)(y
6
7y
5
+ 21y
4
31y
3
+ 21y
2
7y + 1)
· (y
9
3y
8
+ 9y
7
14y
6
+ 18y
5
18y
4
+ 13y
3
8y
2
+ 4y 1)
· (y
21
22y
20
+ ··· + 22y 1)(y
30
28y
29
+ ··· + 125773y + 22801)
c
5
, c
8
(y 1)(y
6
7y
5
+ 21y
4
31y
3
+ 21y
2
7y + 1)
· (y
9
4y
8
+ 8y
7
13y
6
+ 18y
5
18y
4
+ 14y
3
9y
2
+ 3y 1)
· (y
21
11y
20
+ ··· + 21y 1)(y
30
+ 18y
28
+ ··· 35y + 1)
c
6
, c
7
, c
11
y(y
3
+ 3y
2
+ 2y 1)
2
· (y
9
+ 10y
8
+ 41y
7
+ 86y
6
+ 86y
5
+ 4y
4
75y
3
61y
2
14y 1)
· ((y
15
+ 16y
14
+ ··· 4y 1)
2
)(y
21
+ 23y
20
+ ··· + 324y 81)
c
10
, c
12
y(y
3
y
2
+ 2y 1)
2
· (y
9
+ 2y
8
31y
7
37y
6
+ 384y
5
230y
4
422y
3
161y
2
22y 1)
· (y
15
+ 16y
14
+ ··· 344y 25)
2
· (y
21
+ 19y
20
+ ··· 3839724y 1996569)
27