12n
0670
(K12n
0670
)
A knot diagram
1
Linearized knot diagam
4 5 7 2 8 3 11 5 12 7 9 10
Solving Sequence
8,11 3,7
4 6 5 9 12 2 1 10
c
7
c
3
c
6
c
5
c
8
c
11
c
2
c
1
c
10
c
4
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h1.08226 × 10
53
u
26
+ 3.46651 × 10
53
u
25
+ ··· + 6.35629 × 10
53
b 9.30418 × 10
53
,
1.28555 × 10
53
u
26
+ 3.81262 × 10
52
u
25
+ ··· + 1.27126 × 10
54
a 1.73709 × 10
55
, u
27
+ 4u
26
+ ··· 36u 8i
I
u
2
= h2u
7
+ u
6
3u
5
3u
4
+ 4u
3
+ 3u
2
+ b 2u 4, 6u
7
+ 2u
6
8u
5
7u
4
+ 11u
3
+ 5u
2
+ a 4u 9,
u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1i
I
u
3
= hb + 2u + 1, a u + 3, u
2
u 1i
I
u
4
= hb u, a, u
2
u 1i
I
v
1
= ha, 5v
2
+ 7b 49v 11, v
3
+ 10v
2
+ 5v + 1i
* 5 irreducible components of dim
C
= 0, with total 42 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h1.08×10
53
u
26
+3.47×10
53
u
25
+· · ·+6.36×10
53
b9.30×10
53
, 1.29×10
53
u
26
+
3.81 × 10
52
u
25
+ · · · + 1.27 × 10
54
a 1.74 × 10
55
, u
27
+ 4u
26
+ · · · 36u 8i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
3
=
0.101124u
26
0.0299909u
25
+ ··· + 208.958u + 13.6643
0.170266u
26
0.545367u
25
+ ··· + 9.62422u + 1.46377
a
7
=
1
u
2
a
4
=
0.180542u
26
0.294451u
25
+ ··· + 212.007u + 15.1966
0.206040u
26
0.663628u
25
+ ··· + 10.9044u + 1.88945
a
6
=
0.426084u
26
+ 1.57401u
25
+ ··· + 106.382u + 3.92285
0.102378u
26
+ 0.343812u
25
+ ··· 1.38646u 1.36007
a
5
=
0.323706u
26
+ 1.23020u
25
+ ··· + 107.769u + 5.28292
0.102378u
26
+ 0.343812u
25
+ ··· 1.38646u 1.36007
a
9
=
0.0171155u
26
+ 0.0283407u
25
+ ··· 26.6157u 2.71004
0.0302735u
26
+ 0.0988551u
25
+ ··· 0.938445u 0.463848
a
12
=
0.0251997u
26
0.0548227u
25
+ ··· + 26.2467u + 2.85292
0.0188792u
26
0.0620300u
25
+ ··· + 1.82255u + 0.224933
a
2
=
0.336468u
26
0.923526u
25
+ ··· + 132.165u + 10.0199
0.251652u
26
0.818179u
25
+ ··· + 10.8630u + 2.53569
a
1
=
0.0473890u
26
+ 0.127196u
25
+ ··· 27.5541u 3.17389
0.00858260u
26
+ 0.0283575u
25
+ ··· 0.927413u 0.0350346
a
10
=
u
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0379585u
26
+ 1.16314u
25
+ ··· + 780.278u + 65.8410
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
u
27
12u
26
+ ··· 82u 1
c
3
, c
6
u
27
+ 4u
26
+ ··· + 640u 256
c
5
, c
8
u
27
+ 3u
26
+ ··· 112u + 16
c
7
, c
10
u
27
4u
26
+ ··· 36u + 8
c
9
, c
11
, c
12
u
27
+ 7u
26
+ ··· 65u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
27
46y
26
+ ··· + 6314y 1
c
3
, c
6
y
27
54y
26
+ ··· + 5095424y 65536
c
5
, c
8
y
27
+ 25y
26
+ ··· + 12928y 256
c
7
, c
10
y
27
+ 12y
26
+ ··· + 7696y 64
c
9
, c
11
, c
12
y
27
15y
26
+ ··· + 4023y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.598885 + 1.018170I
a = 0.527451 0.308767I
b = 0.147510 + 0.585443I
2.46734 + 1.28188I 0.019660 0.966602I
u = 0.598885 1.018170I
a = 0.527451 + 0.308767I
b = 0.147510 0.585443I
2.46734 1.28188I 0.019660 + 0.966602I
u = 0.975452 + 0.786268I
a = 0.196879 + 0.002027I
b = 0.073018 0.478334I
1.16826 5.86191I 6.68570 + 1.60407I
u = 0.975452 0.786268I
a = 0.196879 0.002027I
b = 0.073018 + 0.478334I
1.16826 + 5.86191I 6.68570 1.60407I
u = 0.538379 + 0.455019I
a = 1.62953 + 0.35861I
b = 0.061105 0.490914I
1.156740 + 0.801856I 6.71973 + 0.16728I
u = 0.538379 0.455019I
a = 1.62953 0.35861I
b = 0.061105 + 0.490914I
1.156740 0.801856I 6.71973 0.16728I
u = 0.702983 + 0.023598I
a = 2.18915 + 4.62670I
b = 0.99845 + 1.93414I
0.834252 0.150815I 17.5464 + 6.6365I
u = 0.702983 0.023598I
a = 2.18915 4.62670I
b = 0.99845 1.93414I
0.834252 + 0.150815I 17.5464 6.6365I
u = 0.442597 + 0.499853I
a = 0.078287 0.292577I
b = 0.33969 1.38997I
4.69512 2.40532I 3.41247 6.32084I
u = 0.442597 0.499853I
a = 0.078287 + 0.292577I
b = 0.33969 + 1.38997I
4.69512 + 2.40532I 3.41247 + 6.32084I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.610551
a = 0.710713
b = 0.376982
0.859867 11.9670
u = 0.594482
a = 4.50707
b = 0.0513464
7.81649 57.8300
u = 1.58256
a = 1.18182
b = 3.57318
7.98804 43.0640
u = 0.34038 + 1.67519I
a = 1.057830 + 0.148663I
b = 0.340400 + 0.098336I
13.16990 + 3.53439I 0. 2.09406I
u = 0.34038 1.67519I
a = 1.057830 0.148663I
b = 0.340400 0.098336I
13.16990 3.53439I 0. + 2.09406I
u = 0.60820 + 1.69659I
a = 0.877793 0.221512I
b = 0.35535 1.77081I
6.34499 6.08931I 0. + 3.73020I
u = 0.60820 1.69659I
a = 0.877793 + 0.221512I
b = 0.35535 + 1.77081I
6.34499 + 6.08931I 0. 3.73020I
u = 0.03133 + 1.80621I
a = 0.524823 + 0.076099I
b = 0.25035 + 1.73182I
7.44159 1.29405I 1.37770 + 1.27497I
u = 0.03133 1.80621I
a = 0.524823 0.076099I
b = 0.25035 1.73182I
7.44159 + 1.29405I 1.37770 1.27497I
u = 0.142980
a = 49.1336
b = 0.408460
0.561362 203.500
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.125648
a = 6.99415
b = 0.661597
1.12664 9.59770
u = 1.42516 + 1.34942I
a = 0.835437 + 0.737623I
b = 0.57720 + 2.23959I
15.7574 13.5083I 0
u = 1.42516 1.34942I
a = 0.835437 0.737623I
b = 0.57720 2.23959I
15.7574 + 13.5083I 0
u = 1.66937 + 1.50035I
a = 0.579428 0.676345I
b = 0.28102 2.41058I
18.5782 + 5.9421I 0
u = 1.66937 1.50035I
a = 0.579428 + 0.676345I
b = 0.28102 + 2.41058I
18.5782 5.9421I 0
u = 1.62430 + 1.65382I
a = 0.445794 + 0.495251I
b = 0.10758 + 2.58327I
16.0044 + 2.3695I 0
u = 1.62430 1.65382I
a = 0.445794 0.495251I
b = 0.10758 2.58327I
16.0044 2.3695I 0
7
II. I
u
2
= h2u
7
+ u
6
3u
5
3u
4
+ 4u
3
+ 3u
2
+ b 2u 4, 6u
7
+ 2u
6
+ · · · +
a 9, u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
3
=
6u
7
2u
6
+ 8u
5
+ 7u
4
11u
3
5u
2
+ 4u + 9
2u
7
u
6
+ 3u
5
+ 3u
4
4u
3
3u
2
+ 2u + 4
a
7
=
1
u
2
a
4
=
6u
7
2u
6
+ 8u
5
+ 7u
4
11u
3
5u
2
+ 4u + 9
2u
7
u
6
+ 3u
5
+ 3u
4
4u
3
3u
2
+ 2u + 4
a
6
=
1
u
2
a
5
=
u
2
+ 1
u
2
a
9
=
u
4
u
2
+ 1
u
4
a
12
=
u
6
u
4
+ 2u
2
1
u
7
u
6
+ 2u
5
+ u
4
2u
3
2u
2
+ 2u + 1
a
2
=
6u
7
2u
6
+ 8u
5
+ 7u
4
11u
3
4u
2
+ 4u + 8
2u
7
u
6
+ 3u
5
+ 3u
4
4u
3
4u
2
+ 2u + 4
a
1
=
u
2
1
u
2
a
10
=
u
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 44u
7
15u
6
+ 58u
5
+ 53u
4
78u
3
42u
2
+ 28u + 73
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
8
c
3
, c
6
u
8
c
4
(u + 1)
8
c
5
u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1
c
7
u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1
c
8
u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1
c
9
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1
c
10
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
c
11
, c
12
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
8
c
3
, c
6
y
8
c
5
, c
8
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
c
7
, c
10
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
c
9
, c
11
, c
12
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.570868 + 0.730671I
a = 1.194470 0.635084I
b = 0.281371 + 1.128550I
0.604279 + 1.131230I 0.744211 + 0.553382I
u = 0.570868 0.730671I
a = 1.194470 + 0.635084I
b = 0.281371 1.128550I
0.604279 1.131230I 0.744211 0.553382I
u = 0.855237 + 0.665892I
a = 0.637416 0.344390I
b = 0.208670 0.825203I
3.80435 + 2.57849I 2.39106 4.72239I
u = 0.855237 0.665892I
a = 0.637416 + 0.344390I
b = 0.208670 + 0.825203I
3.80435 2.57849I 2.39106 + 4.72239I
u = 1.09818
a = 0.687555
b = 0.829189
4.85780 8.45210
u = 1.031810 + 0.655470I
a = 0.286111 + 0.344558I
b = 0.284386 + 0.605794I
0.73474 6.44354I 0.47538 + 9.99765I
u = 1.031810 0.655470I
a = 0.286111 0.344558I
b = 0.284386 0.605794I
0.73474 + 6.44354I 0.47538 9.99765I
u = 0.603304
a = 7.54843
b = 2.74744
0.799899 60.8910
11
III. I
u
3
= hb + 2u + 1, a u + 3, u
2
u 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
3
=
u 3
2u 1
a
7
=
1
u + 1
a
4
=
2u 4
u 1
a
6
=
3u + 5
0
a
5
=
3u + 5
0
a
9
=
1
0
a
12
=
u
u
a
2
=
4u + 5
2u 1
a
1
=
1
u 1
a
10
=
u
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 45
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
10
, c
11
, c
12
u
2
+ u 1
c
4
, c
6
, c
7
c
9
u
2
u 1
c
5
, c
8
u
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
c
9
, c
10
, c
11
c
12
y
2
3y + 1
c
5
, c
8
y
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.618034
a = 3.61803
b = 0.236068
7.89568 45.0000
u = 1.61803
a = 1.38197
b = 4.23607
7.89568 45.0000
15
IV. I
u
4
= hb u, a, u
2
u 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
3
=
0
u
a
7
=
1
u + 1
a
4
=
u
u 1
a
6
=
1
0
a
5
=
1
0
a
9
=
1
0
a
12
=
u
u
a
2
=
u
u
a
1
=
1
u 1
a
10
=
u
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
10
, c
11
, c
12
u
2
+ u 1
c
4
, c
6
, c
7
c
9
u
2
u 1
c
5
, c
8
u
2
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
c
9
, c
10
, c
11
c
12
y
2
3y + 1
c
5
, c
8
y
2
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0
b = 0.618034
0 0
u = 1.61803
a = 0
b = 1.61803
0 0
19
V. I
v
1
= ha, 5v
2
+ 7b 49v 11, v
3
+ 10v
2
+ 5v + 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
v
0
a
3
=
0
5
7
v
2
+ 7v +
11
7
a
7
=
1
0
a
4
=
5
7
v
2
7v
11
7
5
7
v
2
+ 7v +
11
7
a
6
=
1
2
7
v
2
+ 3v +
17
7
a
5
=
2
7
v
2
3v
10
7
2
7
v
2
+ 3v +
17
7
a
9
=
5
7
v
2
+ 7v +
25
7
v
2
10v 5
a
12
=
5
7
v
2
6v
25
7
v
2
+ 10v + 5
a
2
=
1
2
7
v
2
+ 3v +
17
7
a
1
=
5
7
v
2
7v
25
7
v
2
+ 10v + 5
a
10
=
v
0
(ii) Obstruction class = 1
(iii) Cusp Shapes =
54
7
v
2
65v
95
7
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
u
3
+ u
2
1
c
3
u
3
u
2
+ 2u 1
c
4
u
3
u
2
+ 1
c
5
u
3
+ 3u
2
+ 2u 1
c
6
u
3
+ u
2
+ 2u + 1
c
7
, c
10
u
3
c
8
u
3
3u
2
+ 2u + 1
c
9
(u + 1)
3
c
11
, c
12
(u 1)
3
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
3
y
2
+ 2y 1
c
3
, c
6
y
3
+ 3y
2
+ 2y 1
c
5
, c
8
y
3
5y
2
+ 10y 1
c
7
, c
10
y
3
c
9
, c
11
, c
12
(y 1)
3
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.258045 + 0.197115I
a = 0
b = 0.215080 + 1.307140I
4.66906 + 2.82812I 2.98758 12.02771I
v = 0.258045 0.197115I
a = 0
b = 0.215080 1.307140I
4.66906 2.82812I 2.98758 + 12.02771I
v = 9.48391
a = 0
b = 0.569840
0.531480 90.9750
23
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
((u 1)
8
)(u
2
+ u 1)
2
(u
3
+ u
2
1)(u
27
12u
26
+ ··· 82u 1)
c
3
u
8
(u
2
+ u 1)
2
(u
3
u
2
+ 2u 1)(u
27
+ 4u
26
+ ··· + 640u 256)
c
4
((u + 1)
8
)(u
2
u 1)
2
(u
3
u
2
+ 1)(u
27
12u
26
+ ··· 82u 1)
c
5
u
4
(u
3
+ 3u
2
+ 2u 1)
· (u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
· (u
27
+ 3u
26
+ ··· 112u + 16)
c
6
u
8
(u
2
u 1)
2
(u
3
+ u
2
+ 2u + 1)(u
27
+ 4u
26
+ ··· + 640u 256)
c
7
u
3
(u
2
u 1)
2
(u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1)
· (u
27
4u
26
+ ··· 36u + 8)
c
8
u
4
(u
3
3u
2
+ 2u + 1)
· (u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
· (u
27
+ 3u
26
+ ··· 112u + 16)
c
9
(u + 1)
3
(u
2
u 1)
2
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
· (u
27
+ 7u
26
+ ··· 65u + 1)
c
10
u
3
(u
2
+ u 1)
2
(u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1)
· (u
27
4u
26
+ ··· 36u + 8)
c
11
, c
12
(u 1)
3
(u
2
+ u 1)
2
(u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)
· (u
27
+ 7u
26
+ ··· 65u + 1)
24
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
8
(y
2
3y + 1)
2
(y
3
y
2
+ 2y 1)
· (y
27
46y
26
+ ··· + 6314y 1)
c
3
, c
6
y
8
(y
2
3y + 1)
2
(y
3
+ 3y
2
+ 2y 1)
· (y
27
54y
26
+ ··· + 5095424y 65536)
c
5
, c
8
y
4
(y
3
5y
2
+ 10y 1)
· (y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
· (y
27
+ 25y
26
+ ··· + 12928y 256)
c
7
, c
10
y
3
(y
2
3y + 1)
2
(y
8
3y
7
+ ··· 4y + 1)
· (y
27
+ 12y
26
+ ··· + 7696y 64)
c
9
, c
11
, c
12
(y 1)
3
(y
2
3y + 1)
2
· (y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
27
15y
26
+ ··· + 4023y 1)
25