12n
0675
(K12n
0675
)
A knot diagram
1
Linearized knot diagam
4 5 7 2 10 3 11 12 6 7 8 10
Solving Sequence
7,10
11 8 12
1,4
3 6 5 2 9
c
10
c
7
c
11
c
12
c
3
c
6
c
5
c
2
c
9
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h53226740u
26
42852864u
25
+ ··· + 64758649b + 11501166,
64856230u
26
108182252u
25
+ ··· + 129517298a 547630611, u
27
4u
26
+ ··· + 4u + 1i
I
u
2
= hb + u, a + u + 2, u
2
+ u 1i
I
u
3
= hb + u, a 1, u
2
+ u 1i
I
u
4
= hb + 1, a, u 1i
* 4 irreducible components of dim
C
= 0, with total 32 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h5.32 × 10
7
u
26
4.29 × 10
7
u
25
+ · · · + 6.48 × 10
7
b + 1.15 × 10
7
, 6.49 ×
10
7
u
26
1.08×10
8
u
25
+· · · +1.30×10
8
a5.48×10
8
, u
27
4u
26
+· · · +4u +1i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
8
=
u
u
3
+ u
a
12
=
u
2
+ 1
u
4
2u
2
a
1
=
u
4
3u
2
+ 1
u
4
2u
2
a
4
=
0.500753u
26
+ 0.835273u
25
+ ··· 23.9653u + 4.22824
0.821925u
26
+ 0.661732u
25
+ ··· 3.64955u 0.177600
a
3
=
0.500753u
26
+ 0.835273u
25
+ ··· 23.9653u + 4.22824
0.858098u
26
3.24135u
25
+ ··· 8.82126u 1.34534
a
6
=
2.71316u
26
6.18461u
25
+ ··· + 6.88730u 3.99351
2.21391u
26
+ 5.01988u
25
+ ··· + 8.14742u + 1.22175
a
5
=
0.499247u
26
1.16473u
25
+ ··· + 15.0347u 2.77176
2.21391u
26
+ 5.01988u
25
+ ··· + 8.14742u + 1.22175
a
2
=
0.499247u
26
+ 1.16473u
25
+ ··· 15.0347u + 2.77176
1.71408u
26
+ 2.71888u
25
+ ··· 0.116110u + 0.211149
a
9
=
u
3
+ 2u
u
5
3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1678565237
129517298
u
26
2789533850
64758649
u
25
+ ···
5239074250
64758649
u
3637568297
129517298
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
u
27
4u
26
+ ··· 8u + 1
c
3
, c
6
u
27
+ 3u
26
+ ··· 5u
2
+ 2
c
5
, c
9
u
27
+ 2u
26
+ ··· + 64u + 16
c
7
, c
8
, c
10
c
11
u
27
4u
26
+ ··· + 4u + 1
c
12
u
27
+ 18u
26
+ ··· + 3596u 79
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
27
18y
26
+ ··· + 32y 1
c
3
, c
6
y
27
+ 3y
26
+ ··· + 20y 4
c
5
, c
9
y
27
+ 24y
26
+ ··· + 5760y 256
c
7
, c
8
, c
10
c
11
y
27
38y
26
+ ··· + 124y 1
c
12
y
27
98y
26
+ ··· + 19523924y 6241
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.121780 + 0.081011I
a = 0.927106 0.741069I
b = 0.180646 0.935031I
3.25561 1.59407I 1.48399 + 1.30043I
u = 1.121780 0.081011I
a = 0.927106 + 0.741069I
b = 0.180646 + 0.935031I
3.25561 + 1.59407I 1.48399 1.30043I
u = 0.676956 + 0.533355I
a = 0.448265 0.714880I
b = 0.426855 0.510105I
1.49150 + 0.51721I 4.06426 0.81218I
u = 0.676956 0.533355I
a = 0.448265 + 0.714880I
b = 0.426855 + 0.510105I
1.49150 0.51721I 4.06426 + 0.81218I
u = 0.791066 + 0.310151I
a = 0.264806 0.568080I
b = 0.454975 0.578171I
1.41628 + 0.49520I 5.40104 1.30639I
u = 0.791066 0.310151I
a = 0.264806 + 0.568080I
b = 0.454975 + 0.578171I
1.41628 0.49520I 5.40104 + 1.30639I
u = 0.228516 + 0.809567I
a = 0.877576 + 0.806986I
b = 0.241186 + 0.308813I
0.00983 + 4.15530I 1.52548 6.50197I
u = 0.228516 0.809567I
a = 0.877576 0.806986I
b = 0.241186 0.308813I
0.00983 4.15530I 1.52548 + 6.50197I
u = 1.100020 + 0.502260I
a = 0.243788 + 1.127340I
b = 0.07217 + 1.44072I
4.12391 8.58608I 0.18359 + 6.75545I
u = 1.100020 0.502260I
a = 0.243788 1.127340I
b = 0.07217 1.44072I
4.12391 + 8.58608I 0.18359 6.75545I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.240020 + 0.262480I
a = 0.444851 0.925878I
b = 0.124876 1.372680I
7.42745 3.21213I 3.92477 + 2.89567I
u = 1.240020 0.262480I
a = 0.444851 + 0.925878I
b = 0.124876 + 1.372680I
7.42745 + 3.21213I 3.92477 2.89567I
u = 0.687500
a = 0.446145
b = 3.22294
0.443313 52.6840
u = 1.42416
a = 0.788121
b = 1.37734
1.56955 5.83560
u = 0.505186
a = 3.09428
b = 0.715357
8.08146 27.4200
u = 1.62890
a = 0.330211
b = 2.82377
7.71976 34.5090
u = 0.272815 + 0.206929I
a = 1.71928 0.05752I
b = 1.028070 + 0.618606I
1.240020 + 0.678999I 6.54613 + 1.58470I
u = 0.272815 0.206929I
a = 1.71928 + 0.05752I
b = 1.028070 0.618606I
1.240020 0.678999I 6.54613 1.58470I
u = 1.75657 + 0.14232I
a = 0.583385 + 0.775944I
b = 0.52277 + 2.72994I
14.1973 + 11.3192I 0
u = 1.75657 0.14232I
a = 0.583385 0.775944I
b = 0.52277 2.72994I
14.1973 11.3192I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.76109 + 0.08264I
a = 0.058331 0.610400I
b = 0.11130 2.01234I
11.07900 2.32684I 0
u = 1.76109 0.08264I
a = 0.058331 + 0.610400I
b = 0.11130 + 2.01234I
11.07900 + 2.32684I 0
u = 1.76627 + 0.02002I
a = 0.752423 0.715336I
b = 1.05997 2.28626I
13.78760 + 2.02303I 0
u = 1.76627 0.02002I
a = 0.752423 + 0.715336I
b = 1.05997 + 2.28626I
13.78760 2.02303I 0
u = 1.79047 + 0.06797I
a = 0.655019 0.749285I
b = 0.73536 2.51744I
18.4512 + 4.7028I 0
u = 1.79047 0.06797I
a = 0.655019 + 0.749285I
b = 0.73536 + 2.51744I
18.4512 4.7028I 0
u = 0.0970792
a = 6.32592
b = 0.401694
0.870483 12.0480
7
II. I
u
2
= hb + u, a + u + 2, u
2
+ u 1i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
11
=
1
u 1
a
8
=
u
u + 1
a
12
=
u
u
a
1
=
0
u
a
4
=
u 2
u
a
3
=
u 2
u + 1
a
6
=
2u + 3
0
a
5
=
2u + 3
0
a
2
=
2u + 3
u + 1
a
9
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 16
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
10
, c
11
, c
12
u
2
+ u 1
c
4
, c
6
, c
7
c
8
u
2
u 1
c
5
, c
9
u
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
c
8
, c
10
, c
11
c
12
y
2
3y + 1
c
5
, c
9
y
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 2.61803
b = 0.618034
7.89568 16.0000
u = 1.61803
a = 0.381966
b = 1.61803
7.89568 16.0000
11
III. I
u
3
= hb + u, a 1, u
2
+ u 1i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
11
=
1
u 1
a
8
=
u
u + 1
a
12
=
u
u
a
1
=
0
u
a
4
=
1
u
a
3
=
1
1
a
6
=
u
0
a
5
=
u
0
a
2
=
u
1
a
9
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
10
, c
11
, c
12
u
2
+ u 1
c
4
, c
6
, c
7
c
8
u
2
u 1
c
5
, c
9
u
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
c
8
, c
10
, c
11
c
12
y
2
3y + 1
c
5
, c
9
y
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.00000
b = 0.618034
0 1.00000
u = 1.61803
a = 1.00000
b = 1.61803
0 1.00000
15
IV. I
u
4
= hb + 1, a, u 1i
(i) Arc colorings
a
7
=
0
1
a
10
=
1
0
a
11
=
1
1
a
8
=
1
0
a
12
=
0
1
a
1
=
1
1
a
4
=
0
1
a
3
=
0
1
a
6
=
0
1
a
5
=
1
1
a
2
=
1
2
a
9
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
9
c
10
, c
11
, c
12
u 1
c
3
, c
6
u
c
4
, c
5
, c
7
c
8
u + 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
7
, c
8
c
9
, c
10
, c
11
c
12
y 1
c
3
, c
6
y
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 1.00000
0 0
19
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)(u
2
+ u 1)
2
(u
27
4u
26
+ ··· 8u + 1)
c
3
u(u
2
+ u 1)
2
(u
27
+ 3u
26
+ ··· 5u
2
+ 2)
c
4
(u + 1)(u
2
u 1)
2
(u
27
4u
26
+ ··· 8u + 1)
c
5
u
4
(u + 1)(u
27
+ 2u
26
+ ··· + 64u + 16)
c
6
u(u
2
u 1)
2
(u
27
+ 3u
26
+ ··· 5u
2
+ 2)
c
7
, c
8
(u + 1)(u
2
u 1)
2
(u
27
4u
26
+ ··· + 4u + 1)
c
9
u
4
(u 1)(u
27
+ 2u
26
+ ··· + 64u + 16)
c
10
, c
11
(u 1)(u
2
+ u 1)
2
(u
27
4u
26
+ ··· + 4u + 1)
c
12
(u 1)(u
2
+ u 1)
2
(u
27
+ 18u
26
+ ··· + 3596u 79)
20
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)(y
2
3y + 1)
2
(y
27
18y
26
+ ··· + 32y 1)
c
3
, c
6
y(y
2
3y + 1)
2
(y
27
+ 3y
26
+ ··· + 20y 4)
c
5
, c
9
y
4
(y 1)(y
27
+ 24y
26
+ ··· + 5760y 256)
c
7
, c
8
, c
10
c
11
(y 1)(y
2
3y + 1)
2
(y
27
38y
26
+ ··· + 124y 1)
c
12
(y 1)(y
2
3y + 1)
2
(y
27
98y
26
+ ··· + 1.95239 × 10
7
y 6241)
21