12n
0678
(K12n
0678
)
A knot diagram
1
Linearized knot diagam
4 5 7 2 10 3 12 11 6 7 8 10
Solving Sequence
7,12 4,8
3 6 11 10 1 5 2 9
c
7
c
3
c
6
c
11
c
10
c
12
c
5
c
2
c
9
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−171832171743933u
44
+ 565195223234702u
43
+ ··· + 319912709247818b 45090425568559,
221527977237717u
44
489493690784658u
43
+ ··· + 319912709247818a + 1085130159951208,
u
45
3u
44
+ ··· 8u + 1i
I
u
2
= h−au + b u, u
2
a + a
2
+ au u
2
+ 4a, u
3
+ u
2
+ 2u + 1i
* 2 irreducible components of dim
C
= 0, with total 51 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−1.72×10
14
u
44
+5.65×10
14
u
43
+· · ·+3.20×10
14
b4.51×10
13
, 2.22×
10
14
u
44
4.89×10
14
u
43
+· · ·+3.20×10
14
a+1.09×10
15
, u
45
3u
44
+· · ·8u+1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
4
=
0.692464u
44
+ 1.53009u
43
+ ··· 21.6689u 3.39196
0.537122u
44
1.76672u
43
+ ··· + 4.08754u + 0.140946
a
8
=
1
u
2
a
3
=
0.155342u
44
0.236632u
43
+ ··· 17.5814u 3.25101
0.537122u
44
1.76672u
43
+ ··· + 4.08754u + 0.140946
a
6
=
1.72119u
44
3.14555u
43
+ ··· + 18.4989u + 1.81534
2.01801u
44
+ 5.92336u
43
+ ··· 15.5848u + 1.72119
a
11
=
u
u
3
+ u
a
10
=
u
3
2u
u
3
+ u
a
1
=
u
7
+ 4u
5
+ 4u
3
u
7
3u
5
2u
3
+ u
a
5
=
0.470191u
44
+ 1.87005u
43
+ ··· + 7.18359u + 3.39261
0.462878u
44
+ 1.23328u
43
+ ··· 3.91246u + 0.140946
a
2
=
1.21496u
44
+ 3.02326u
43
+ ··· 22.9486u 0.0362322
0.462878u
44
1.23328u
43
+ ··· + 3.91246u 0.140946
a
9
=
u
2
+ 1
u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
124420232195109
159956354623909
u
44
+
585183168556345
319912709247818
u
43
+ ···
6164660264148967
319912709247818
u
3111644555281919
319912709247818
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
u
45
4u
44
+ ··· + 3u 1
c
3
, c
6
u
45
+ 4u
44
+ ··· u + 1
c
5
, c
9
u
45
+ 3u
44
+ ··· + 160u + 64
c
7
, c
8
, c
11
u
45
+ 3u
44
+ ··· 8u 1
c
10
u
45
3u
44
+ ··· 542u 97
c
12
u
45
+ 19u
44
+ ··· + 653792u 13633
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
45
34y
44
+ ··· + 5y 1
c
3
, c
6
y
45
6y
44
+ ··· + 5y 1
c
5
, c
9
y
45
+ 35y
44
+ ··· + 58368y 4096
c
7
, c
8
, c
11
y
45
+ 37y
44
+ ··· + 120y 1
c
10
y
45
39y
44
+ ··· + 1081792y 9409
c
12
y
45
59y
44
+ ··· + 530299074808y 185858689
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.583612 + 0.749370I
a = 0.145378 1.180080I
b = 0.314212 + 0.693704I
0.22746 3.52607I 0.53223 + 9.05892I
u = 0.583612 0.749370I
a = 0.145378 + 1.180080I
b = 0.314212 0.693704I
0.22746 + 3.52607I 0.53223 9.05892I
u = 0.884188 + 0.167276I
a = 1.44217 + 3.00622I
b = 1.01437 1.10209I
4.46171 + 9.77082I 1.55814 6.22355I
u = 0.884188 0.167276I
a = 1.44217 3.00622I
b = 1.01437 + 1.10209I
4.46171 9.77082I 1.55814 + 6.22355I
u = 0.862556 + 0.189586I
a = 0.10994 + 1.47934I
b = 0.099189 0.621407I
1.49082 1.15898I 5.48142 + 4.79165I
u = 0.862556 0.189586I
a = 0.10994 1.47934I
b = 0.099189 + 0.621407I
1.49082 + 1.15898I 5.48142 4.79165I
u = 0.879134 + 0.073302I
a = 1.69262 2.92394I
b = 1.05605 + 1.10417I
8.52509 + 4.00354I 1.85103 2.75584I
u = 0.879134 0.073302I
a = 1.69262 + 2.92394I
b = 1.05605 1.10417I
8.52509 4.00354I 1.85103 + 2.75584I
u = 0.834305 + 0.026519I
a = 2.03456 2.80224I
b = 1.11558 + 1.09067I
4.18745 + 1.80014I 0.034492 1.194140I
u = 0.834305 0.026519I
a = 2.03456 + 2.80224I
b = 1.11558 1.09067I
4.18745 1.80014I 0.034492 + 1.194140I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.481295 + 1.085350I
a = 1.52416 1.39190I
b = 0.840283 + 1.091050I
1.64682 4.91710I 3.75732 + 2.86803I
u = 0.481295 1.085350I
a = 1.52416 + 1.39190I
b = 0.840283 1.091050I
1.64682 + 4.91710I 3.75732 2.86803I
u = 0.027576 + 1.213260I
a = 0.097830 + 0.955725I
b = 0.987113 0.071189I
4.06865 0.00938I 7.42868 + 0.I
u = 0.027576 1.213260I
a = 0.097830 0.955725I
b = 0.987113 + 0.071189I
4.06865 + 0.00938I 7.42868 + 0.I
u = 0.310904 + 1.181390I
a = 0.21426 1.54867I
b = 0.294215 + 0.670186I
1.38332 2.86199I 0. + 3.33644I
u = 0.310904 1.181390I
a = 0.21426 + 1.54867I
b = 0.294215 0.670186I
1.38332 + 2.86199I 0. 3.33644I
u = 0.159859 + 1.260150I
a = 1.07101 1.51572I
b = 1.63864 + 0.16074I
11.89460 + 2.24035I 8.35575 + 0.I
u = 0.159859 1.260150I
a = 1.07101 + 1.51572I
b = 1.63864 0.16074I
11.89460 2.24035I 8.35575 + 0.I
u = 0.433209 + 1.205320I
a = 1.56995 + 1.36216I
b = 0.89067 1.16692I
5.04167 + 0.68814I 0
u = 0.433209 1.205320I
a = 1.56995 1.36216I
b = 0.89067 + 1.16692I
5.04167 0.68814I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.091883 + 1.292420I
a = 0.68882 + 2.04860I
b = 0.100880 0.832088I
5.73773 2.01190I 0
u = 0.091883 1.292420I
a = 0.68882 2.04860I
b = 0.100880 + 0.832088I
5.73773 + 2.01190I 0
u = 0.378074 + 1.248800I
a = 0.30888 + 2.43252I
b = 1.23412 0.93095I
0.40714 + 2.55603I 0
u = 0.378074 1.248800I
a = 0.30888 2.43252I
b = 1.23412 + 0.93095I
0.40714 2.55603I 0
u = 0.233067 + 1.286920I
a = 1.54727 1.27295I
b = 0.472121 + 0.195549I
4.28958 3.06247I 27.0240 + 0.I
u = 0.233067 1.286920I
a = 1.54727 + 1.27295I
b = 0.472121 0.195549I
4.28958 + 3.06247I 27.0240 + 0.I
u = 0.376537 + 1.291220I
a = 1.67227 1.26273I
b = 0.99238 + 1.22341I
0.08117 + 6.15166I 0
u = 0.376537 1.291220I
a = 1.67227 + 1.26273I
b = 0.99238 1.22341I
0.08117 6.15166I 0
u = 0.594574 + 0.259179I
a = 0.442778 + 1.247600I
b = 0.223270 0.529291I
1.36466 0.79548I 4.15835 + 2.62510I
u = 0.594574 0.259179I
a = 0.442778 1.247600I
b = 0.223270 + 0.529291I
1.36466 + 0.79548I 4.15835 2.62510I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.173829 + 1.352770I
a = 0.626070 + 0.431699I
b = 0.604107 0.273968I
3.74207 3.36112I 0
u = 0.173829 1.352770I
a = 0.626070 0.431699I
b = 0.604107 + 0.273968I
3.74207 + 3.36112I 0
u = 0.615344
a = 2.94504
b = 0.368354
0.259777 41.6450
u = 0.399717 + 1.327110I
a = 0.22643 2.45843I
b = 1.17155 + 1.01534I
4.14207 + 8.58803I 0
u = 0.399717 1.327110I
a = 0.22643 + 2.45843I
b = 1.17155 1.01534I
4.14207 8.58803I 0
u = 0.40967 + 1.36131I
a = 0.064099 + 1.291930I
b = 0.432795 0.645865I
3.33493 5.79576I 0
u = 0.40967 1.36131I
a = 0.064099 1.291930I
b = 0.432795 + 0.645865I
3.33493 + 5.79576I 0
u = 0.38534 + 1.38238I
a = 0.15294 + 2.46124I
b = 1.12554 1.06328I
0.4279 + 14.3330I 0
u = 0.38534 1.38238I
a = 0.15294 2.46124I
b = 1.12554 + 1.06328I
0.4279 14.3330I 0
u = 0.11768 + 1.50035I
a = 0.220688 0.588458I
b = 0.779647 + 0.534509I
7.68575 5.74695I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.11768 1.50035I
a = 0.220688 + 0.588458I
b = 0.779647 0.534509I
7.68575 + 5.74695I 0
u = 0.466619
a = 4.22060
b = 1.54831
8.02557 22.5480
u = 0.280147 + 0.187854I
a = 2.57065 + 1.29057I
b = 0.441345 0.382694I
1.25055 0.68721I 6.23111 2.03128I
u = 0.280147 0.187854I
a = 2.57065 1.29057I
b = 0.441345 + 0.382694I
1.25055 + 0.68721I 6.23111 + 2.03128I
u = 0.0963991
a = 5.35560
b = 0.614065
0.870395 12.0080
9
II. I
u
2
= h−au + b u, u
2
a + a
2
+ au u
2
+ 4a, u
3
+ u
2
+ 2u + 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
4
=
a
au + u
a
8
=
1
u
2
a
3
=
au + a + u
au + u
a
6
=
u
2
a + u + 1
au u 1
a
11
=
u
u
2
u 1
a
10
=
u
2
+ 1
u
2
u 1
a
1
=
1
0
a
5
=
u
2
a + u + 1
au u 1
a
2
=
au + u
2
a + 2u
au u 1
a
9
=
u
2
+ 1
u
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
2
a + 9u
2
3a + u 1
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
(u
2
+ u 1)
3
c
4
, c
6
(u
2
u 1)
3
c
5
, c
9
u
6
c
7
, c
8
(u
3
+ u
2
+ 2u + 1)
2
c
10
, c
12
(u
3
+ u
2
1)
2
c
11
(u
3
u
2
+ 2u 1)
2
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
(y
2
3y + 1)
3
c
5
, c
9
y
6
c
7
, c
8
, c
11
(y
3
+ 3y
2
+ 2y 1)
2
c
10
, c
12
(y
3
y
2
+ 2y 1)
2
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.924253 + 0.460350I
b = 0.618034
4.01109 2.82812I 8.01769 5.87116I
u = 0.215080 + 1.307140I
a = 1.19831 1.20521I
b = 1.61803
11.90680 2.82812I 8.63833 + 7.89410I
u = 0.215080 1.307140I
a = 0.924253 0.460350I
b = 0.618034
4.01109 + 2.82812I 8.01769 + 5.87116I
u = 0.215080 1.307140I
a = 1.19831 + 1.20521I
b = 1.61803
11.90680 + 2.82812I 8.63833 7.89410I
u = 0.569840
a = 0.0845740
b = 0.618034
0.126494 1.18130
u = 0.569840
a = 3.83945
b = 1.61803
7.76919 9.13080
13
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
((u
2
+ u 1)
3
)(u
45
4u
44
+ ··· + 3u 1)
c
3
((u
2
+ u 1)
3
)(u
45
+ 4u
44
+ ··· u + 1)
c
4
((u
2
u 1)
3
)(u
45
4u
44
+ ··· + 3u 1)
c
5
, c
9
u
6
(u
45
+ 3u
44
+ ··· + 160u + 64)
c
6
((u
2
u 1)
3
)(u
45
+ 4u
44
+ ··· u + 1)
c
7
, c
8
((u
3
+ u
2
+ 2u + 1)
2
)(u
45
+ 3u
44
+ ··· 8u 1)
c
10
((u
3
+ u
2
1)
2
)(u
45
3u
44
+ ··· 542u 97)
c
11
((u
3
u
2
+ 2u 1)
2
)(u
45
+ 3u
44
+ ··· 8u 1)
c
12
((u
3
+ u
2
1)
2
)(u
45
+ 19u
44
+ ··· + 653792u 13633)
14
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
((y
2
3y + 1)
3
)(y
45
34y
44
+ ··· + 5y 1)
c
3
, c
6
((y
2
3y + 1)
3
)(y
45
6y
44
+ ··· + 5y 1)
c
5
, c
9
y
6
(y
45
+ 35y
44
+ ··· + 58368y 4096)
c
7
, c
8
, c
11
((y
3
+ 3y
2
+ 2y 1)
2
)(y
45
+ 37y
44
+ ··· + 120y 1)
c
10
((y
3
y
2
+ 2y 1)
2
)(y
45
39y
44
+ ··· + 1081792y 9409)
c
12
(y
3
y
2
+ 2y 1)
2
· (y
45
59y
44
+ ··· + 530299074808y 185858689)
15