12n
0680
(K12n
0680
)
A knot diagram
1
Linearized knot diagam
4 5 7 2 10 3 12 11 5 7 8 9
Solving Sequence
7,12 4,8
3 6 11 9 1 10 5 2
c
7
c
3
c
6
c
11
c
8
c
12
c
10
c
5
c
2
c
1
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h3449u
20
+ 3669u
19
+ ··· + 71498b 42457, 23077u
20
82531u
19
+ ··· + 71498a + 43556,
u
21
+ 4u
20
+ ··· 2u + 1i
I
u
2
= hb, u
5
+ 2u
4
+ 4u
3
+ 4u
2
+ a + 3u + 2, u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1i
I
u
3
= h−au + b u, u
2
a + a
2
+ au 3u
2
+ 2u 4, u
3
u
2
+ 2u 1i
* 3 irreducible components of dim
C
= 0, with total 33 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h3449u
20
+ 3669u
19
+ · · · + 71498b 42457, 23077u
20
82531u
19
+
· · · + 71498a + 43556, u
21
+ 4u
20
+ · · · 2u + 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
4
=
0.322764u
20
+ 1.15431u
19
+ ··· + 4.24348u 0.609192
0.0482391u
20
0.0513161u
19
+ ··· 0.0347422u + 0.593821
a
8
=
1
u
2
a
3
=
0.274525u
20
+ 1.10300u
19
+ ··· + 4.20873u 0.0153711
0.0482391u
20
0.0513161u
19
+ ··· 0.0347422u + 0.593821
a
6
=
0.224552u
20
1.13479u
19
+ ··· 2.45920u + 0.935718
0.166117u
20
+ 0.596254u
19
+ ··· + 0.165739u 0.324387
a
11
=
u
u
3
+ u
a
9
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
u
5
2u
3
u
u
7
3u
5
2u
3
+ u
a
10
=
u
3
+ 2u
u
3
+ u
a
5
=
0.406179u
20
1.57648u
19
+ ··· 2.97737u + 0.847101
0.0482391u
20
0.0513161u
19
+ ··· 0.0347422u 0.406179
a
2
=
0.0868835u
20
+ 0.255951u
19
+ ··· + 1.16347u + 0.290428
0.0482391u
20
+ 0.0513161u
19
+ ··· + 0.0347422u + 0.406179
(ii) Obstruction class = 1
(iii) Cusp Shapes =
58626
35749
u
20
459843
71498
u
19
+ ··· +
105825
71498
u
777975
71498
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
u
21
10u
20
+ ··· 4u 1
c
3
, c
6
u
21
+ 4u
20
+ ··· 128u + 64
c
5
, c
9
u
21
2u
20
+ ··· + 224u + 64
c
7
, c
8
, c
11
u
21
4u
20
+ ··· 2u 1
c
10
, c
12
u
21
+ 4u
20
+ ··· 304u 97
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
21
4y
20
+ ··· + 152y 1
c
3
, c
6
y
21
+ 30y
20
+ ··· + 90112y 4096
c
5
, c
9
y
21
+ 28y
20
+ ··· + 82944y 4096
c
7
, c
8
, c
11
y
21
+ 22y
20
+ ··· 10y 1
c
10
, c
12
y
21
+ 14y
20
+ ··· 131266y 9409
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.904622 + 0.417722I
a = 1.45274 0.01148I
b = 0.92182 2.09929I
6.05963 + 7.34750I 14.4555 4.2838I
u = 0.904622 0.417722I
a = 1.45274 + 0.01148I
b = 0.92182 + 2.09929I
6.05963 7.34750I 14.4555 + 4.2838I
u = 0.766571 + 0.752408I
a = 1.037380 + 0.144450I
b = 0.29405 + 2.35369I
7.09375 1.76941I 12.87851 0.26190I
u = 0.766571 0.752408I
a = 1.037380 0.144450I
b = 0.29405 2.35369I
7.09375 + 1.76941I 12.87851 + 0.26190I
u = 0.182461 + 1.208850I
a = 0.276557 0.201585I
b = 0.119527 + 0.423528I
2.74625 2.07596I 5.86030 + 3.17371I
u = 0.182461 1.208850I
a = 0.276557 + 0.201585I
b = 0.119527 0.423528I
2.74625 + 2.07596I 5.86030 3.17371I
u = 0.734798
a = 1.01042
b = 1.32151
10.5256 25.3380
u = 0.200947 + 1.339400I
a = 1.31937 + 2.00455I
b = 0.552581 0.279603I
1.78822 2.54403I 24.8123 + 5.5170I
u = 0.200947 1.339400I
a = 1.31937 2.00455I
b = 0.552581 + 0.279603I
1.78822 + 2.54403I 24.8123 5.5170I
u = 0.341638 + 1.336290I
a = 0.828590 0.644391I
b = 1.256020 0.461833I
6.25683 + 3.88389I 16.6815 2.9719I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.341638 1.336290I
a = 0.828590 + 0.644391I
b = 1.256020 + 0.461833I
6.25683 3.88389I 16.6815 + 2.9719I
u = 0.512237
a = 5.60059
b = 0.289328
2.52473 76.9450
u = 0.35905 + 1.50519I
a = 0.78634 + 2.07126I
b = 1.39494 1.98909I
12.2217 + 11.9532I 11.90704 5.00504I
u = 0.35905 1.50519I
a = 0.78634 2.07126I
b = 1.39494 + 1.98909I
12.2217 11.9532I 11.90704 + 5.00504I
u = 0.06735 + 1.55292I
a = 1.37220 + 0.85690I
b = 1.86679 0.98776I
5.79361 0.73866I 10.20116 + 0.28003I
u = 0.06735 1.55292I
a = 1.37220 0.85690I
b = 1.86679 + 0.98776I
5.79361 + 0.73866I 10.20116 0.28003I
u = 0.21280 + 1.64374I
a = 0.63755 2.25205I
b = 0.62112 + 3.12830I
15.1889 + 1.8962I 10.30157 0.70895I
u = 0.21280 1.64374I
a = 0.63755 + 2.25205I
b = 0.62112 3.12830I
15.1889 1.8962I 10.30157 + 0.70895I
u = 0.334401
a = 0.860564
b = 0.297521
0.669543 14.6190
u = 0.077997 + 0.278544I
a = 0.18883 + 1.76255I
b = 0.728300 0.059767I
0.764279 + 0.134030I 11.95123 + 0.33972I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.077997 0.278544I
a = 0.18883 1.76255I
b = 0.728300 + 0.059767I
0.764279 0.134030I 11.95123 0.33972I
7
II.
I
u
2
= hb, u
5
+ 2u
4
+ 4u
3
+ 4u
2
+ a + 3u + 2, u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
4
=
u
5
2u
4
4u
3
4u
2
3u 2
0
a
8
=
1
u
2
a
3
=
u
5
2u
4
4u
3
4u
2
3u 2
0
a
6
=
1
0
a
11
=
u
u
3
+ u
a
9
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
u
5
2u
3
u
u
5
u
4
2u
3
u
2
u + 1
a
10
=
u
3
+ 2u
u
3
+ u
a
5
=
u
5
+ 2u
3
+ u
u
5
+ u
4
+ 2u
3
+ u
2
+ u 1
a
2
=
2u
5
2u
4
6u
3
4u
2
4u 2
u
5
u
4
2u
3
u
2
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
5
u
4
+ 5u
3
+ 4u
2
+ 7u 7
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
6
c
3
, c
6
u
6
c
4
(u + 1)
6
c
5
u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1
c
7
, c
8
u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1
c
9
, c
10
, c
12
u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1
c
11
u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
6
y
6
c
5
, c
9
, c
10
c
12
y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1
c
7
, c
8
, c
11
y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.873214
a = 0.422181
b = 0
9.30502 14.4810
u = 0.138835 + 1.234450I
a = 0.26610 + 1.72116I
b = 0
1.31531 1.97241I 15.7816 + 4.5012I
u = 0.138835 1.234450I
a = 0.26610 1.72116I
b = 0
1.31531 + 1.97241I 15.7816 4.5012I
u = 0.408802 + 1.276380I
a = 0.417699 0.090629I
b = 0
5.34051 + 4.59213I 11.43321 5.39767I
u = 0.408802 1.276380I
a = 0.417699 + 0.090629I
b = 0
5.34051 4.59213I 11.43321 + 5.39767I
u = 0.413150
a = 4.27462
b = 0
2.38379 3.08970
11
III. I
u
3
= h−au + b u, u
2
a + a
2
+ au 3u
2
+ 2u 4, u
3
u
2
+ 2u 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
4
=
a
au + u
a
8
=
1
u
2
a
3
=
au + a + u
au + u
a
6
=
u
2
a + u 3
au u 1
a
11
=
u
u
2
u + 1
a
9
=
u
2
+ 1
u
2
u + 1
a
1
=
1
0
a
10
=
u
2
+ 1
u
2
u + 1
a
5
=
u
2
a + u 3
au u 1
a
2
=
au u
2
a + 2u 4
au u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
2
a 5u
2
+ 3a + 7u 15
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
(u
2
+ u 1)
3
c
4
, c
6
(u
2
u 1)
3
c
5
, c
9
u
6
c
7
, c
8
(u
3
u
2
+ 2u 1)
2
c
10
, c
12
(u
3
u
2
+ 1)
2
c
11
(u
3
+ u
2
+ 2u + 1)
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
(y
2
3y + 1)
3
c
5
, c
9
y
6
c
7
, c
8
, c
11
(y
3
+ 3y
2
+ 2y 1)
2
c
10
, c
12
(y
3
y
2
+ 2y 1)
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 1.075750 + 0.460350I
b = 0.618034
2.03717 2.82812I 12.9982 + 11.8301I
u = 0.215080 + 1.307140I
a = 0.80169 1.20521I
b = 1.61803
5.85852 2.82812I 13.61882 1.93520I
u = 0.215080 1.307140I
a = 1.075750 0.460350I
b = 0.618034
2.03717 + 2.82812I 12.9982 11.8301I
u = 0.215080 1.307140I
a = 0.80169 + 1.20521I
b = 1.61803
5.85852 + 2.82812I 13.61882 + 1.93520I
u = 0.569840
a = 1.83945
b = 1.61803
9.99610 8.90830
u = 0.569840
a = 2.08457
b = 0.618034
2.10041 16.8580
15
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
((u 1)
6
)(u
2
+ u 1)
3
(u
21
10u
20
+ ··· 4u 1)
c
3
u
6
(u
2
+ u 1)
3
(u
21
+ 4u
20
+ ··· 128u + 64)
c
4
((u + 1)
6
)(u
2
u 1)
3
(u
21
10u
20
+ ··· 4u 1)
c
5
u
6
(u
6
u
5
+ ··· + u 1)(u
21
2u
20
+ ··· + 224u + 64)
c
6
u
6
(u
2
u 1)
3
(u
21
+ 4u
20
+ ··· 128u + 64)
c
7
, c
8
(u
3
u
2
+ 2u 1)
2
(u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1)
· (u
21
4u
20
+ ··· 2u 1)
c
9
u
6
(u
6
+ u
5
+ ··· u 1)(u
21
2u
20
+ ··· + 224u + 64)
c
10
, c
12
(u
3
u
2
+ 1)
2
(u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1)
· (u
21
+ 4u
20
+ ··· 304u 97)
c
11
(u
3
+ u
2
+ 2u + 1)
2
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)
· (u
21
4u
20
+ ··· 2u 1)
16
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
((y 1)
6
)(y
2
3y + 1)
3
(y
21
4y
20
+ ··· + 152y 1)
c
3
, c
6
y
6
(y
2
3y + 1)
3
(y
21
+ 30y
20
+ ··· + 90112y 4096)
c
5
, c
9
y
6
(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
· (y
21
+ 28y
20
+ ··· + 82944y 4096)
c
7
, c
8
, c
11
(y
3
+ 3y
2
+ 2y 1)
2
(y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1)
· (y
21
+ 22y
20
+ ··· 10y 1)
c
10
, c
12
(y
3
y
2
+ 2y 1)
2
(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
· (y
21
+ 14y
20
+ ··· 131266y 9409)
17