12n
0681
(K12n
0681
)
A knot diagram
1
Linearized knot diagam
4 5 7 2 11 3 10 12 7 8 5 9
Solving Sequence
8,11
10
3,7
6 5 12 2 4 1 9
c
10
c
7
c
6
c
5
c
11
c
2
c
4
c
1
c
9
c
3
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.29319 × 10
25
u
26
8.14562 × 10
25
u
25
+ ··· + 2.10275 × 10
26
b + 1.50746 × 10
26
,
9.51680 × 10
25
u
26
+ 6.52825 × 10
26
u
25
+ ··· + 2.10275 × 10
26
a 7.67512 × 10
27
, u
27
+ 7u
26
+ ··· 65u + 1i
I
u
2
= h−u
7
2u
6
+ 2u
5
+ 4u
4
2u
3
u
2
+ b + u 3, 2u
7
+ 2u
6
5u
5
4u
4
+ 3u
3
+ a + u + 3,
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1i
I
u
3
= h4a
2
+ 23b 33a + 3, a
3
8a
2
+ 3a 7, u 1i
I
u
4
= hb 2u + 1, a + u + 4, u
2
+ u 1i
I
u
5
= hb + u, a u 2, u
2
+ u 1i
* 5 irreducible components of dim
C
= 0, with total 42 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.29 × 10
25
u
26
8.15 × 10
25
u
25
+ · · · + 2.10 × 10
26
b + 1.51 ×
10
26
, 9.52 × 10
25
u
26
+ 6.53 × 10
26
u
25
+ · · · + 2.10 × 10
26
a 7.68 ×
10
27
, u
27
+ 7u
26
+ · · · 65u + 1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
10
=
1
u
2
a
3
=
0.452588u
26
3.10462u
25
+ ··· 55.6935u + 36.5004
0.0614998u
26
+ 0.387379u
25
+ ··· + 3.33121u 0.716900
a
7
=
u
u
3
+ u
a
6
=
0.486093u
26
3.57968u
25
+ ··· 55.8612u + 20.4963
0.0646653u
26
+ 0.428826u
25
+ ··· + 0.403387u 0.357433
a
5
=
0.550758u
26
4.00850u
25
+ ··· 56.2646u + 20.8537
0.0646653u
26
+ 0.428826u
25
+ ··· + 0.403387u 0.357433
a
12
=
0.0697411u
26
0.446921u
25
+ ··· 5.57659u + 8.05416
0.0811376u
26
0.484277u
25
+ ··· + 5.23091u 0.200858
a
2
=
0.478778u
26
3.47699u
25
+ ··· 53.7199u + 20.8543
0.0459720u
26
+ 0.264293u
25
+ ··· 0.415707u 0.385704
a
4
=
0.514677u
26
3.50894u
25
+ ··· 55.7920u + 36.4942
0.0496659u
26
+ 0.333051u
25
+ ··· + 5.46117u 0.741054
a
1
=
0.0759051u
26
+ 0.518888u
25
+ ··· + 8.57256u 7.97571
0.100287u
26
+ 0.631138u
25
+ ··· 2.83878u + 0.163326
a
9
=
u
2
+ 1
u
4
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
128221912491069143432166825
210275241869650933749294956
u
26
1069012753234217659630964039
210275241869650933749294956
u
25
+
···
14132876007342110386546979695
210275241869650933749294956
u
1802365230129749281114104905
210275241869650933749294956
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
u
27
12u
26
+ ··· 82u 1
c
3
, c
6
u
27
+ 4u
26
+ ··· + 640u 256
c
5
, c
11
u
27
+ 3u
26
+ ··· 112u + 16
c
7
, c
9
, c
10
u
27
+ 7u
26
+ ··· 65u + 1
c
8
, c
12
u
27
4u
26
+ ··· 36u + 8
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
27
46y
26
+ ··· + 6314y 1
c
3
, c
6
y
27
54y
26
+ ··· + 5095424y 65536
c
5
, c
11
y
27
+ 25y
26
+ ··· + 12928y 256
c
7
, c
9
, c
10
y
27
15y
26
+ ··· + 4023y 1
c
8
, c
12
y
27
+ 12y
26
+ ··· + 7696y 64
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.989617
a = 9.38049
b = 0.408460
0.561362 203.500
u = 1.035410 + 0.203452I
a = 0.415320 + 0.863420I
b = 0.33969 + 1.38997I
4.69512 + 2.40532I 3.41247 + 6.32084I
u = 1.035410 0.203452I
a = 0.415320 0.863420I
b = 0.33969 1.38997I
4.69512 2.40532I 3.41247 6.32084I
u = 1.035950 + 0.225932I
a = 0.376658 + 0.725229I
b = 0.061105 0.490914I
1.156740 + 0.801856I 6.71973 + 0.16728I
u = 1.035950 0.225932I
a = 0.376658 0.725229I
b = 0.061105 + 0.490914I
1.156740 0.801856I 6.71973 0.16728I
u = 0.231476 + 0.812947I
a = 1.010650 0.337430I
b = 0.147510 + 0.585443I
2.46734 + 1.28188I 0.019660 0.966602I
u = 0.231476 0.812947I
a = 1.010650 + 0.337430I
b = 0.147510 0.585443I
2.46734 1.28188I 0.019660 + 0.966602I
u = 0.707396
a = 4.75513
b = 0.0513464
7.81649 57.8300
u = 1.305580 + 0.386979I
a = 0.110314 0.122910I
b = 0.073018 0.478334I
1.16826 5.86191I 6.68570 + 1.60407I
u = 1.305580 0.386979I
a = 0.110314 + 0.122910I
b = 0.073018 + 0.478334I
1.16826 + 5.86191I 6.68570 1.60407I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.836004 + 1.095460I
a = 0.0688478 + 0.0584922I
b = 0.25035 + 1.73182I
7.44159 1.29405I 1.37770 + 1.27497I
u = 0.836004 1.095460I
a = 0.0688478 0.0584922I
b = 0.25035 1.73182I
7.44159 + 1.29405I 1.37770 1.27497I
u = 0.558394 + 0.255485I
a = 0.39540 + 1.82247I
b = 0.99845 1.93414I
0.834252 + 0.150815I 17.5464 6.6365I
u = 0.558394 0.255485I
a = 0.39540 1.82247I
b = 0.99845 + 1.93414I
0.834252 0.150815I 17.5464 + 6.6365I
u = 1.016510 + 0.945163I
a = 1.046130 0.262688I
b = 0.340400 0.098336I
13.16990 3.53439I 0.41212 + 2.09406I
u = 1.016510 0.945163I
a = 1.046130 + 0.262688I
b = 0.340400 + 0.098336I
13.16990 + 3.53439I 0.41212 2.09406I
u = 1.16800 + 0.91505I
a = 1.271790 0.556686I
b = 0.35535 1.77081I
6.34499 6.08931I 0.21731 + 3.73020I
u = 1.16800 0.91505I
a = 1.271790 + 0.556686I
b = 0.35535 + 1.77081I
6.34499 + 6.08931I 0.21731 3.73020I
u = 0.491518
a = 0.797650
b = 0.376982
0.859867 11.9670
u = 0.06761 + 1.51979I
a = 0.239446 + 0.151266I
b = 0.28102 2.41058I
18.5782 + 5.9421I 1.31050 2.20591I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.06761 1.51979I
a = 0.239446 0.151266I
b = 0.28102 + 2.41058I
18.5782 5.9421I 1.31050 + 2.20591I
u = 1.60127
a = 2.03965
b = 3.57318
7.98804 43.0640
u = 1.55855 + 0.65683I
a = 1.03603 + 1.21486I
b = 0.57720 + 2.23959I
15.7574 13.5083I 0.77209 + 5.37939I
u = 1.55855 0.65683I
a = 1.03603 1.21486I
b = 0.57720 2.23959I
15.7574 + 13.5083I 0.77209 5.37939I
u = 1.68805 + 0.77291I
a = 0.823135 + 0.943566I
b = 0.10758 + 2.58327I
16.0044 + 2.3695I 0
u = 1.68805 0.77291I
a = 0.823135 0.943566I
b = 0.10758 2.58327I
16.0044 2.3695I 0
u = 0.0157914
a = 35.5742
b = 0.661597
1.12664 9.59770
7
II. I
u
2
= h−u
7
2u
6
+ 2u
5
+ 4u
4
2u
3
u
2
+ b + u 3, 2u
7
+ 2u
6
5u
5
4u
4
+ 3u
3
+ a + u + 3, u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
10
=
1
u
2
a
3
=
2u
7
2u
6
+ 5u
5
+ 4u
4
3u
3
u 3
u
7
+ 2u
6
2u
5
4u
4
+ 2u
3
+ u
2
u + 3
a
7
=
u
u
3
+ u
a
6
=
u
u
3
+ u
a
5
=
u
3
2u
u
3
+ u
a
12
=
u
6
3u
4
+ 2u
2
+ 1
u
6
+ 2u
4
u
2
a
2
=
2u
7
2u
6
+ 5u
5
+ 4u
4
4u
3
+ u 3
u
7
+ 2u
6
2u
5
4u
4
+ 3u
3
+ u
2
2u + 3
a
4
=
2u
7
2u
6
+ 5u
5
+ 4u
4
3u
3
u 3
u
7
+ 2u
6
2u
5
4u
4
+ 2u
3
+ u
2
u + 3
a
1
=
u
3
+ 2u
u
3
u
a
9
=
u
2
+ 1
u
4
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 21u
7
+ 38u
6
48u
5
85u
4
+ 39u
3
+ 27u
2
5u + 58
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
8
c
3
, c
6
u
8
c
4
(u + 1)
8
c
5
u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1
c
7
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1
c
8
u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1
c
9
, c
10
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
c
11
u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1
c
12
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
8
c
3
, c
6
y
8
c
5
, c
11
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
c
7
, c
9
, c
10
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
c
8
, c
12
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.180120 + 0.268597I
a = 1.23903 + 1.07030I
b = 0.281371 + 1.128550I
0.604279 + 1.131230I 0.744211 + 0.553382I
u = 1.180120 0.268597I
a = 1.23903 1.07030I
b = 0.281371 1.128550I
0.604279 1.131230I 0.744211 0.553382I
u = 0.108090 + 0.747508I
a = 0.188536 + 0.513699I
b = 0.208670 0.825203I
3.80435 + 2.57849I 2.39106 4.72239I
u = 0.108090 0.747508I
a = 0.188536 0.513699I
b = 0.208670 + 0.825203I
3.80435 2.57849I 2.39106 + 4.72239I
u = 1.37100
a = 0.942639
b = 0.829189
4.85780 8.45210
u = 1.334530 + 0.318930I
a = 0.271933 + 0.551071I
b = 0.284386 + 0.605794I
0.73474 6.44354I 0.47538 + 9.99765I
u = 1.334530 0.318930I
a = 0.271933 0.551071I
b = 0.284386 0.605794I
0.73474 + 6.44354I 0.47538 9.99765I
u = 0.463640
a = 3.49976
b = 2.74744
0.799899 60.8910
11
III. I
u
3
= h4a
2
+ 23b 33a + 3, a
3
8a
2
+ 3a 7, u 1i
(i) Arc colorings
a
8
=
0
1
a
11
=
1
0
a
10
=
1
1
a
3
=
a
4
23
a
2
+
33
23
a
3
23
a
7
=
1
0
a
6
=
1
23
a
2
+
9
23
a
51
23
1
23
a
2
+
14
23
a
41
23
a
5
=
2
23
a
2
5
23
a
10
23
1
23
a
2
+
14
23
a
41
23
a
12
=
0
5
23
a
2
+
47
23
a
67
23
a
2
=
1
23
a
2
+
9
23
a
5
23
1
23
a
2
+
14
23
a
41
23
a
4
=
4
23
a
2
10
23
a +
3
23
4
23
a
2
+
33
23
a
3
23
a
1
=
0
5
23
a
2
+
47
23
a
67
23
a
9
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
75
23
a
2
+
314
23
a
39
23
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
u
3
+ u
2
1
c
3
u
3
u
2
+ 2u 1
c
4
u
3
u
2
+ 1
c
5
u
3
3u
2
+ 2u + 1
c
6
u
3
+ u
2
+ 2u + 1
c
7
(u + 1)
3
c
8
, c
12
u
3
c
9
, c
10
(u 1)
3
c
11
u
3
+ 3u
2
+ 2u 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
3
y
2
+ 2y 1
c
3
, c
6
y
3
+ 3y
2
+ 2y 1
c
5
, c
11
y
3
5y
2
+ 10y 1
c
7
, c
9
, c
10
(y 1)
3
c
8
, c
12
y
3
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.135484 + 0.941977I
b = 0.215080 + 1.307140I
4.66906 2.82812I 2.98758 + 12.02771I
u = 1.00000
a = 0.135484 0.941977I
b = 0.215080 1.307140I
4.66906 + 2.82812I 2.98758 12.02771I
u = 1.00000
a = 7.72903
b = 0.569840
0.531480 90.9750
15
IV. I
u
4
= hb 2u + 1, a + u + 4, u
2
+ u 1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
10
=
1
u + 1
a
3
=
u 4
2u 1
a
7
=
u
u + 1
a
6
=
3u + 5
0
a
5
=
3u + 5
0
a
12
=
1
0
a
2
=
4u + 4
2u 1
a
4
=
u 3
u 1
a
1
=
u
u 1
a
9
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 45
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
9
, c
10
, c
12
u
2
+ u 1
c
4
, c
6
, c
7
c
8
u
2
u 1
c
5
, c
11
u
2
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
c
8
, c
9
, c
10
c
12
y
2
3y + 1
c
5
, c
11
y
2
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.618034
a = 4.61803
b = 0.236068
7.89568 45.0000
u = 1.61803
a = 2.38197
b = 4.23607
7.89568 45.0000
19
V. I
u
5
= hb + u, a u 2, u
2
+ u 1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
10
=
1
u + 1
a
3
=
u + 2
u
a
7
=
u
u + 1
a
6
=
1
0
a
5
=
1
0
a
12
=
1
0
a
2
=
2
u
a
4
=
2u + 1
u 1
a
1
=
u
u 1
a
9
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
9
, c
10
, c
12
u
2
+ u 1
c
4
, c
6
, c
7
c
8
u
2
u 1
c
5
, c
11
u
2
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
c
8
, c
9
, c
10
c
12
y
2
3y + 1
c
5
, c
11
y
2
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.618034
a = 2.61803
b = 0.618034
0 0
u = 1.61803
a = 0.381966
b = 1.61803
0 0
23
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
((u 1)
8
)(u
2
+ u 1)
2
(u
3
+ u
2
1)(u
27
12u
26
+ ··· 82u 1)
c
3
u
8
(u
2
+ u 1)
2
(u
3
u
2
+ 2u 1)(u
27
+ 4u
26
+ ··· + 640u 256)
c
4
((u + 1)
8
)(u
2
u 1)
2
(u
3
u
2
+ 1)(u
27
12u
26
+ ··· 82u 1)
c
5
u
4
(u
3
3u
2
+ 2u + 1)
· (u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
· (u
27
+ 3u
26
+ ··· 112u + 16)
c
6
u
8
(u
2
u 1)
2
(u
3
+ u
2
+ 2u + 1)(u
27
+ 4u
26
+ ··· + 640u 256)
c
7
(u + 1)
3
(u
2
u 1)
2
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
· (u
27
+ 7u
26
+ ··· 65u + 1)
c
8
u
3
(u
2
u 1)
2
(u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1)
· (u
27
4u
26
+ ··· 36u + 8)
c
9
, c
10
(u 1)
3
(u
2
+ u 1)
2
(u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)
· (u
27
+ 7u
26
+ ··· 65u + 1)
c
11
u
4
(u
3
+ 3u
2
+ 2u 1)
· (u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
· (u
27
+ 3u
26
+ ··· 112u + 16)
c
12
u
3
(u
2
+ u 1)
2
(u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1)
· (u
27
4u
26
+ ··· 36u + 8)
24
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
8
(y
2
3y + 1)
2
(y
3
y
2
+ 2y 1)
· (y
27
46y
26
+ ··· + 6314y 1)
c
3
, c
6
y
8
(y
2
3y + 1)
2
(y
3
+ 3y
2
+ 2y 1)
· (y
27
54y
26
+ ··· + 5095424y 65536)
c
5
, c
11
y
4
(y
3
5y
2
+ 10y 1)
· (y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
· (y
27
+ 25y
26
+ ··· + 12928y 256)
c
7
, c
9
, c
10
(y 1)
3
(y
2
3y + 1)
2
· (y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
27
15y
26
+ ··· + 4023y 1)
c
8
, c
12
y
3
(y
2
3y + 1)
2
(y
8
3y
7
+ ··· 4y + 1)
· (y
27
+ 12y
26
+ ··· + 7696y 64)
25