12n
0682
(K12n
0682
)
A knot diagram
1
Linearized knot diagam
4 5 7 2 11 3 10 11 1 8 5 9
Solving Sequence
1,4
2
5,9
10 12 11 6 8 7 3
c
1
c
4
c
9
c
12
c
11
c
5
c
8
c
7
c
3
c
2
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
12
+ 2u
11
4u
10
8u
9
+ 6u
8
+ 9u
7
6u
6
+ u
5
+ 5u
4
6u
3
2u
2
+ 2b + 3u,
3u
12
+ 9u
11
22u
9
16u
8
+ 5u
7
+ 5u
6
+ 11u
5
+ 20u
4
+ 9u
3
2u
2
+ 2a 3u 1,
u
13
+ 3u
12
u
11
10u
10
4u
9
+ 9u
8
+ 3u
7
+ 8u
5
7u
3
u
2
+ u 1i
I
u
2
= h2.01428 × 10
42
u
43
+ 5.41774 × 10
42
u
42
+ ··· + 7.34448 × 10
41
b 8.38901 × 10
41
,
8.61708 × 10
41
u
43
+ 1.60924 × 10
42
u
42
+ ··· + 7.34448 × 10
41
a 4.49822 × 10
43
, u
44
+ 4u
43
+ ··· + 116u 1i
I
u
3
= hb, 3u
2
+ a 5u 4, u
3
+ u
2
1i
I
u
4
= h−4a
2
+ 23b 33a 3, a
3
+ 8a
2
+ 3a + 7, u 1i
I
u
5
= hb + u, a + u, u
2
+ u 1i
I
u
6
= hb u 1, a + 2, u
2
+ u 1i
* 6 irreducible components of dim
C
= 0, with total 67 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
12
+2u
11
+· · ·+ 2b+3u, 3u
12
+9u
11
+· · ·+ 2a1, u
13
+3u
12
+· · ·+ u1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
u
a
2
=
1
u
2
a
5
=
u
u
3
+ u
a
9
=
3
2
u
12
9
2
u
11
+ ··· +
3
2
u +
1
2
1
2
u
12
u
11
+ ··· + u
2
3
2
u
a
10
=
u
12
7
2
u
11
+ ··· + 3u +
1
2
1
2
u
12
u
11
+ ··· + u
2
3
2
u
a
12
=
1
2
u
12
2u
11
+ ··· +
3
2
u + 1
u
3
u
a
11
=
u
11
2u
10
+ 2u
9
+ 6u
8
+ u
7
3u
6
2u
5
3u
4
3u
3
+ 2u + 1
1
2
u
12
+
1
2
u
11
+ ···
1
2
u
1
2
a
6
=
1
2
u
12
3u
10
+ ··· +
3
2
u 1
3
2
u
12
+
7
2
u
11
+ ··· +
7
2
u
3
2
a
8
=
1
2
u
12
5
2
u
11
+ ··· +
1
2
u +
1
2
1
2
u
12
+
1
2
u
11
+ ···
1
2
u
1
2
a
7
=
1
2
u
11
+ u
10
+ ··· u +
3
2
u
11
u
10
+ 4u
9
+ 3u
8
6u
7
u
6
+ 3u
5
4u
4
+ u
3
+ 3u
2
u
a
3
=
u
2
+ 1
u
4
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 3u
12
18u
11
24u
10
+ 32u
9
+ 80u
8
+ 9u
7
34u
6
+ 5u
5
47u
4
70u
3
+ 6u
2
+ 11u 18
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
7
, c
8
, c
10
u
13
3u
12
u
11
+ 10u
10
4u
9
9u
8
+ 3u
7
+ 8u
5
7u
3
+ u
2
+ u + 1
c
3
, c
6
, c
9
c
12
u
13
+ u
12
+ ··· + 5u + 1
c
5
, c
11
u
13
+ 5u
12
+ ··· 8u 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
7
, c
8
, c
10
y
13
11y
12
+ ··· y 1
c
3
, c
6
, c
9
c
12
y
13
3y
12
+ ··· + 7y 1
c
5
, c
11
y
13
5y
12
+ ··· + 96y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.920255
a = 7.53293
b = 0.375392
2.84609 65.8580
u = 0.217488 + 0.883339I
a = 0.447419 0.357015I
b = 1.079610 + 0.670263I
2.14237 5.68500I 7.77978 + 6.07128I
u = 0.217488 0.883339I
a = 0.447419 + 0.357015I
b = 1.079610 0.670263I
2.14237 + 5.68500I 7.77978 6.07128I
u = 0.795282 + 0.405757I
a = 0.416083 + 0.498754I
b = 0.175698 + 0.846144I
1.52283 + 3.56370I 3.66796 8.41026I
u = 0.795282 0.405757I
a = 0.416083 0.498754I
b = 0.175698 0.846144I
1.52283 3.56370I 3.66796 + 8.41026I
u = 1.266340 + 0.164860I
a = 1.095680 + 0.368409I
b = 0.352007 + 0.886032I
3.86762 1.80054I 11.65148 + 0.61379I
u = 1.266340 0.164860I
a = 1.095680 0.368409I
b = 0.352007 0.886032I
3.86762 + 1.80054I 11.65148 0.61379I
u = 1.38670 + 0.37744I
a = 1.155750 + 0.361386I
b = 1.132190 0.771142I
10.71940 + 7.71547I 15.7360 5.7316I
u = 1.38670 0.37744I
a = 1.155750 0.361386I
b = 1.132190 + 0.771142I
10.71940 7.71547I 15.7360 + 5.7316I
u = 0.240304 + 0.377267I
a = 1.36715 + 1.11084I
b = 0.640664 0.285334I
0.98403 1.11558I 8.69395 + 6.01211I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.240304 0.377267I
a = 1.36715 1.11084I
b = 0.640664 + 0.285334I
0.98403 + 1.11558I 8.69395 6.01211I
u = 1.50228 + 0.43298I
a = 1.69209 0.37137I
b = 1.35574 + 0.89152I
8.8777 + 15.5620I 14.5417 7.8795I
u = 1.50228 0.43298I
a = 1.69209 + 0.37137I
b = 1.35574 0.89152I
8.8777 15.5620I 14.5417 + 7.8795I
6
II. I
u
2
=
h2.01×10
42
u
43
+5.42×10
42
u
42
+· · ·+7.34×10
41
b8.39×10
41
, 8.62×10
41
u
43
+
1.61 × 10
42
u
42
+ · · · + 7.34 × 10
41
a 4.50 × 10
43
, u
44
+ 4u
43
+ · · · + 116u 1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
u
a
2
=
1
u
2
a
5
=
u
u
3
+ u
a
9
=
1.17327u
43
2.19108u
42
+ ··· 439.275u + 61.2463
2.74257u
43
7.37661u
42
+ ··· 201.685u + 1.14222
a
10
=
1.56930u
43
+ 5.18553u
42
+ ··· 237.590u + 60.1040
2.74257u
43
7.37661u
42
+ ··· 201.685u + 1.14222
a
12
=
3.61816u
43
+ 9.27065u
42
+ ··· + 182.489u + 32.8026
4.49904u
43
+ 11.8002u
42
+ ··· + 312.338u 3.00702
a
11
=
1.96942u
43
+ 5.25944u
42
+ ··· + 65.5876u + 33.8026
2.07745u
43
+ 5.75738u
42
+ ··· + 127.873u 1.42316
a
6
=
1.07148u
43
+ 2.89399u
42
+ ··· + 59.4605u + 9.96375
1.37364u
43
+ 3.38028u
42
+ ··· + 86.1371u 0.830453
a
8
=
1.70871u
43
+ 4.01744u
42
+ ··· + 60.7021u + 31.6372
2.07745u
43
+ 5.75738u
42
+ ··· + 127.873u 1.42316
a
7
=
1.78926u
43
+ 4.62600u
42
+ ··· + 163.701u 11.9689
1.22781u
43
2.74973u
42
+ ··· 70.8975u + 0.701920
a
3
=
u
2
+ 1
u
4
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2.60530u
43
11.0854u
42
+ ··· + 553.011u 13.5461
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
7
, c
8
, c
10
u
44
4u
43
+ ··· 116u 1
c
3
, c
6
, c
9
c
12
u
44
+ 3u
43
+ ··· 44u + 8
c
5
, c
11
(u
22
u
21
+ ··· 9u 2)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
7
, c
8
, c
10
y
44
40y
43
+ ··· 12428y + 1
c
3
, c
6
, c
9
c
12
y
44
21y
43
+ ··· 7760y + 64
c
5
, c
11
(y
22
15y
21
+ ··· 113y + 4)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.090540 + 0.022158I
a = 3.21063 2.07089I
b = 0.729158 0.031613I
2.83824 + 0.14755I 2.77483 4.21375I
u = 1.090540 0.022158I
a = 3.21063 + 2.07089I
b = 0.729158 + 0.031613I
2.83824 0.14755I 2.77483 + 4.21375I
u = 0.109119 + 0.888646I
a = 0.410159 0.255099I
b = 1.061150 + 0.336334I
5.93215 3.14286I 14.6418 + 3.7109I
u = 0.109119 0.888646I
a = 0.410159 + 0.255099I
b = 1.061150 0.336334I
5.93215 + 3.14286I 14.6418 3.7109I
u = 0.344224 + 1.065750I
a = 0.392445 + 0.502444I
b = 1.174950 0.756583I
3.01557 10.18830I 12.15400 + 6.99410I
u = 0.344224 1.065750I
a = 0.392445 0.502444I
b = 1.174950 + 0.756583I
3.01557 + 10.18830I 12.15400 6.99410I
u = 1.134110 + 0.122816I
a = 0.077142 + 0.931712I
b = 0.03859 + 1.46465I
1.18895 + 3.23778I 15.5021 9.5411I
u = 1.134110 0.122816I
a = 0.077142 0.931712I
b = 0.03859 1.46465I
1.18895 3.23778I 15.5021 + 9.5411I
u = 1.036890 + 0.519128I
a = 0.495432 0.747200I
b = 0.705965 0.517769I
0.357526 + 0.716312I 8.85937 2.91987I
u = 1.036890 0.519128I
a = 0.495432 + 0.747200I
b = 0.705965 + 0.517769I
0.357526 0.716312I 8.85937 + 2.91987I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.748799 + 0.898808I
a = 0.318628 0.160414I
b = 0.598618 + 0.291695I
1.18895 + 3.23778I 15.5021 9.5411I
u = 0.748799 0.898808I
a = 0.318628 + 0.160414I
b = 0.598618 0.291695I
1.18895 3.23778I 15.5021 + 9.5411I
u = 0.238284 + 0.726491I
a = 0.590561 1.081680I
b = 0.583355 + 1.078870I
1.09298 3.55787I 9.79859 + 4.38747I
u = 0.238284 0.726491I
a = 0.590561 + 1.081680I
b = 0.583355 1.078870I
1.09298 + 3.55787I 9.79859 4.38747I
u = 0.736176
a = 0.801410
b = 0.0947175
1.10346 8.70720
u = 0.164222 + 0.700108I
a = 0.889479 + 0.479637I
b = 0.576121 0.856265I
3.71629 3.80483 + 0.I
u = 0.164222 0.700108I
a = 0.889479 0.479637I
b = 0.576121 + 0.856265I
3.71629 3.80483 + 0.I
u = 1.243520 + 0.352072I
a = 0.852793 1.120250I
b = 1.274130 + 0.140265I
9.47192 1.36166I 0
u = 1.243520 0.352072I
a = 0.852793 + 1.120250I
b = 1.274130 0.140265I
9.47192 + 1.36166I 0
u = 0.643688 + 0.282110I
a = 2.22845 + 4.03294I
b = 0.062262 0.456825I
2.83824 0.14755I 2.77483 + 4.21375I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.643688 0.282110I
a = 2.22845 4.03294I
b = 0.062262 + 0.456825I
2.83824 + 0.14755I 2.77483 4.21375I
u = 1.047760 + 0.864022I
a = 0.255518 + 0.521043I
b = 1.055110 + 0.486781I
5.02280 + 3.68716I 0
u = 1.047760 0.864022I
a = 0.255518 0.521043I
b = 1.055110 0.486781I
5.02280 3.68716I 0
u = 1.351490 + 0.160264I
a = 1.139470 0.246938I
b = 0.991832 + 0.785748I
5.93215 + 3.14286I 0
u = 1.351490 0.160264I
a = 1.139470 + 0.246938I
b = 0.991832 0.785748I
5.93215 3.14286I 0
u = 1.347140 + 0.234013I
a = 2.04959 0.19598I
b = 1.55821 + 0.42887I
5.02280 + 3.68716I 0
u = 1.347140 0.234013I
a = 2.04959 + 0.19598I
b = 1.55821 0.42887I
5.02280 3.68716I 0
u = 1.358520 + 0.282419I
a = 1.96744 0.07093I
b = 0.937408 + 0.526012I
1.09298 3.55787I 0
u = 1.358520 0.282419I
a = 1.96744 + 0.07093I
b = 0.937408 0.526012I
1.09298 + 3.55787I 0
u = 0.117503 + 0.569726I
a = 0.457122 0.216490I
b = 1.007210 0.504052I
0.357526 0.716312I 8.85937 + 2.91987I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.117503 0.569726I
a = 0.457122 + 0.216490I
b = 1.007210 + 0.504052I
0.357526 + 0.716312I 8.85937 2.91987I
u = 1.42436
a = 2.09618
b = 2.01618
16.0009 0
u = 1.39535 + 0.29610I
a = 0.197837 0.800968I
b = 0.58639 1.50954I
6.28468 + 7.27868I 0
u = 1.39535 0.29610I
a = 0.197837 + 0.800968I
b = 0.58639 + 1.50954I
6.28468 7.27868I 0
u = 1.40825 + 0.36939I
a = 1.88459 + 0.34782I
b = 1.39293 0.68109I
3.01557 + 10.18830I 0
u = 1.40825 0.36939I
a = 1.88459 0.34782I
b = 1.39293 + 0.68109I
3.01557 10.18830I 0
u = 1.45462 + 0.06689I
a = 0.830038 0.316230I
b = 0.720926 + 0.858306I
9.47192 + 1.36166I 0
u = 1.45462 0.06689I
a = 0.830038 + 0.316230I
b = 0.720926 0.858306I
9.47192 1.36166I 0
u = 0.521744
a = 2.11947
b = 1.64818
9.78452 30.1490
u = 1.57069 + 0.28000I
a = 1.52006 + 0.01103I
b = 1.152160 0.610789I
6.28468 7.27868I 0
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.57069 0.28000I
a = 1.52006 0.01103I
b = 1.152160 + 0.610789I
6.28468 + 7.27868I 0
u = 1.63226
a = 1.82053
b = 0.616211
9.78452 0
u = 1.80378
a = 1.14737
b = 1.21054
16.0009 0
u = 0.00897213
a = 57.4044
b = 0.580690
1.10346 8.70720
14
III. I
u
3
= hb, 3u
2
+ a 5u 4, u
3
+ u
2
1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
u
a
2
=
1
u
2
a
5
=
u
u
2
+ u 1
a
9
=
3u
2
+ 5u + 4
0
a
10
=
3u
2
+ 5u + 4
0
a
12
=
1
0
a
11
=
u
2u
2
u + 2
a
6
=
2u + 1
5u
2
+ 2u 4
a
8
=
3u
2
+ 4u + 4
2u
2
+ u 2
a
7
=
u
2u
2
+ u 2
a
3
=
u
2
+ 1
u
2
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 21u
2
+ 45u + 27
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
u
3
+ u
2
1
c
3
u
3
u
2
+ 2u 1
c
4
u
3
u
2
+ 1
c
5
u
3
3u
2
+ 2u + 1
c
6
u
3
+ u
2
+ 2u + 1
c
7
, c
8
(u 1)
3
c
9
, c
12
u
3
c
10
(u + 1)
3
c
11
u
3
+ 3u
2
+ 2u 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
3
y
2
+ 2y 1
c
3
, c
6
y
3
+ 3y
2
+ 2y 1
c
5
, c
11
y
3
5y
2
+ 10y 1
c
7
, c
8
, c
10
(y 1)
3
c
9
, c
12
y
3
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.258045 0.197115I
b = 0
1.37919 + 2.82812I 7.96807 + 6.06881I
u = 0.877439 0.744862I
a = 0.258045 + 0.197115I
b = 0
1.37919 2.82812I 7.96807 6.06881I
u = 0.754878
a = 9.48391
b = 0
2.75839 72.9360
18
IV. I
u
4
= h−4a
2
+ 23b 33a 3, a
3
+ 8a
2
+ 3a + 7, u 1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
1
a
2
=
1
1
a
5
=
1
0
a
9
=
a
4
23
a
2
+
33
23
a +
3
23
a
10
=
4
23
a
2
10
23
a
3
23
4
23
a
2
+
33
23
a +
3
23
a
12
=
1
23
a
2
+
9
23
a +
51
23
1
23
a
2
+
14
23
a +
41
23
a
11
=
2
23
a
2
5
23
a +
10
23
1
23
a
2
+
14
23
a +
41
23
a
6
=
0
5
23
a
2
+
47
23
a +
67
23
a
8
=
1
23
a
2
+
9
23
a +
5
23
1
23
a
2
+
14
23
a +
41
23
a
7
=
0
5
23
a
2
+
47
23
a +
67
23
a
3
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
51
23
a
2
+
162
23
a
117
23
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
3
c
3
, c
6
u
3
c
4
(u + 1)
3
c
5
u
3
+ 3u
2
+ 2u 1
c
7
, c
8
u
3
+ u
2
1
c
9
u
3
u
2
+ 2u 1
c
10
u
3
u
2
+ 1
c
11
u
3
3u
2
+ 2u + 1
c
12
u
3
+ u
2
+ 2u + 1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
3
c
3
, c
6
y
3
c
5
, c
11
y
3
5y
2
+ 10y 1
c
7
, c
8
, c
10
y
3
y
2
+ 2y 1
c
9
, c
12
y
3
+ 3y
2
+ 2y 1
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.135484 + 0.941977I
b = 0.215080 + 1.307140I
1.37919 + 2.82812I 7.96807 + 6.06881I
u = 1.00000
a = 0.135484 0.941977I
b = 0.215080 1.307140I
1.37919 2.82812I 7.96807 6.06881I
u = 1.00000
a = 7.72903
b = 0.569840
2.75839 72.9360
22
V. I
u
5
= hb + u, a + u, u
2
+ u 1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
u
a
2
=
1
u + 1
a
5
=
u
u + 1
a
9
=
u
u
a
10
=
0
u
a
12
=
u
u 1
a
11
=
u
u 1
a
6
=
u
u + 1
a
8
=
1
u 1
a
7
=
1
0
a
3
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 20
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
u
2
+ u 1
c
4
, c
6
, c
10
c
12
u
2
u 1
c
5
, c
11
u
2
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
c
8
, c
9
, c
10
c
12
y
2
3y + 1
c
5
, c
11
y
2
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.618034
b = 0.618034
1.97392 20.0000
u = 1.61803
a = 1.61803
b = 1.61803
17.7653 20.0000
26
VI. I
u
6
= hb u 1, a + 2, u
2
+ u 1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
u
a
2
=
1
u + 1
a
5
=
u
u + 1
a
9
=
2
u + 1
a
10
=
u 3
u + 1
a
12
=
2u + 3
u 2
a
11
=
2u + 3
u 2
a
6
=
u
u + 1
a
8
=
3u + 3
u 2
a
7
=
1
0
a
3
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 65
27
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
u
2
+ u 1
c
4
, c
6
, c
10
c
12
u
2
u 1
c
5
, c
11
u
2
28
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
c
8
, c
9
, c
10
c
12
y
2
3y + 1
c
5
, c
11
y
2
29
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.618034
a = 2.00000
b = 1.61803
9.86960 65.0000
u = 1.61803
a = 2.00000
b = 0.618034
9.86960 65.0000
30
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
8
(u 1)
3
(u
2
+ u 1)
2
(u
3
+ u
2
1)
· (u
13
3u
12
u
11
+ 10u
10
4u
9
9u
8
+ 3u
7
+ 8u
5
7u
3
+ u
2
+ u + 1)
· (u
44
4u
43
+ ··· 116u 1)
c
3
, c
9
u
3
(u
2
+ u 1)
2
(u
3
u
2
+ 2u 1)(u
13
+ u
12
+ ··· + 5u + 1)
· (u
44
+ 3u
43
+ ··· 44u + 8)
c
4
, c
10
(u + 1)
3
(u
2
u 1)
2
(u
3
u
2
+ 1)
· (u
13
3u
12
u
11
+ 10u
10
4u
9
9u
8
+ 3u
7
+ 8u
5
7u
3
+ u
2
+ u + 1)
· (u
44
4u
43
+ ··· 116u 1)
c
5
, c
11
u
4
(u
3
3u
2
+ 2u + 1)(u
3
+ 3u
2
+ 2u 1)(u
13
+ 5u
12
+ ··· 8u 4)
· (u
22
u
21
+ ··· 9u 2)
2
c
6
, c
12
u
3
(u
2
u 1)
2
(u
3
+ u
2
+ 2u + 1)(u
13
+ u
12
+ ··· + 5u + 1)
· (u
44
+ 3u
43
+ ··· 44u + 8)
31
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
7
, c
8
, c
10
((y 1)
3
)(y
2
3y + 1)
2
(y
3
y
2
+ 2y 1)(y
13
11y
12
+ ··· y 1)
· (y
44
40y
43
+ ··· 12428y + 1)
c
3
, c
6
, c
9
c
12
y
3
(y
2
3y + 1)
2
(y
3
+ 3y
2
+ 2y 1)(y
13
3y
12
+ ··· + 7y 1)
· (y
44
21y
43
+ ··· 7760y + 64)
c
5
, c
11
y
4
(y
3
5y
2
+ 10y 1)
2
(y
13
5y
12
+ ··· + 96y 16)
· (y
22
15y
21
+ ··· 113y + 4)
2
32