12n
0685
(K12n
0685
)
A knot diagram
1
Linearized knot diagam
4 5 6 8 10 1 12 2 5 6 3 7
Solving Sequence
1,6 4,7
3 12 8 11 10 5 2 9
c
6
c
3
c
12
c
7
c
11
c
10
c
5
c
2
c
8
c
1
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−2.68320 × 10
40
u
53
+ 4.36845 × 10
39
u
52
+ ··· + 1.09407 × 10
40
b 1.26785 × 10
41
,
1.64738 × 10
41
u
53
5.57914 × 10
40
u
52
+ ··· + 1.09407 × 10
40
a + 4.47020 × 10
41
, u
54
+ 27u
52
+ ··· + 12u + 1i
I
u
2
= hu
12
+ u
11
+ 6u
10
+ 5u
9
+ 13u
8
+ 9u
7
+ 10u
6
+ 5u
5
3u
4
2u
3
6u
2
+ b 2u,
u
12
6u
10
13u
8
9u
6
+ 6u
4
u
3
+ 9u
2
+ a 2u,
u
15
+ u
14
+ 8u
13
+ 7u
12
+ 25u
11
+ 19u
10
+ 36u
9
+ 23u
8
+ 17u
7
+ 8u
6
12u
5
6u
4
12u
3
3u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 69 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−2.68 × 10
40
u
53
+ 4.37 × 10
39
u
52
+ · · · + 1.09 × 10
40
b 1.27 ×
10
41
, 1.65 × 10
41
u
53
5.58 × 10
40
u
52
+ · · · + 1.09 × 10
40
a + 4.47 ×
10
41
, u
54
+ 27u
52
+ · · · + 12u + 1i
(i) Arc colorings
a
1
=
0
u
a
6
=
1
0
a
4
=
15.0573u
53
+ 5.09943u
52
+ ··· 402.388u 40.8584
2.45249u
53
0.399285u
52
+ ··· + 88.5992u + 11.5884
a
7
=
1
u
2
a
3
=
12.6048u
53
+ 4.70015u
52
+ ··· 313.789u 29.2701
2.45249u
53
0.399285u
52
+ ··· + 88.5992u + 11.5884
a
12
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
2u
2
a
11
=
0.314507u
53
1.02928u
52
+ ··· + 9.85086u + 7.65563
3.56268u
53
1.46466u
52
+ ··· + 94.5090u + 11.9366
a
10
=
3.24818u
53
+ 0.435380u
52
+ ··· 84.6581u 4.28102
3.56268u
53
1.46466u
52
+ ··· + 94.5090u + 11.9366
a
5
=
15.6451u
53
+ 5.62013u
52
+ ··· 401.641u 38.9539
2.72593u
53
0.398787u
52
+ ··· + 92.7573u + 11.9546
a
2
=
13.4990u
53
+ 5.55580u
52
+ ··· 340.986u 35.3036
5.19761u
53
1.33305u
52
+ ··· + 151.350u + 17.6227
a
9
=
0.950637u
53
+ 0.741154u
52
+ ··· + 8.38831u + 2.44017
3.60099u
53
+ 1.54873u
52
+ ··· 107.000u 11.4663
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8.59125u
53
+ 0.873911u
52
+ ··· 257.258u 36.1424
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
54
u
53
+ ··· 23705u 2291
c
2
u
54
+ 4u
53
+ ··· + 28u 1
c
3
u
54
u
53
+ ··· 2159u + 239
c
4
u
54
6u
52
+ ··· + 22u + 1
c
5
, c
9
, c
10
u
54
+ u
53
+ ··· + 11u 1
c
6
, c
7
, c
12
u
54
+ 27u
52
+ ··· + 12u + 1
c
8
u
54
+ u
53
+ ··· + u + 1
c
11
u
54
2u
53
+ ··· + 36164u 1709
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
54
35y
53
+ ··· 169277117y + 5248681
c
2
y
54
+ 54y
53
+ ··· + 60y + 1
c
3
y
54
53y
53
+ ··· + 93385y + 57121
c
4
y
54
12y
53
+ ··· 440y + 1
c
5
, c
9
, c
10
y
54
y
53
+ ··· 45y + 1
c
6
, c
7
, c
12
y
54
+ 54y
53
+ ··· 74y + 1
c
8
y
54
49y
53
+ ··· 151y + 1
c
11
y
54
+ 62y
53
+ ··· 555348524y + 2920681
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.727247 + 0.655546I
a = 1.120070 0.569467I
b = 1.45756 0.28228I
7.16637 + 5.36550I 3.29115 2.38015I
u = 0.727247 0.655546I
a = 1.120070 + 0.569467I
b = 1.45756 + 0.28228I
7.16637 5.36550I 3.29115 + 2.38015I
u = 0.817874 + 0.466543I
a = 1.01459 1.44161I
b = 1.54231 + 0.48478I
6.57271 10.55460I 4.62377 + 7.07679I
u = 0.817874 0.466543I
a = 1.01459 + 1.44161I
b = 1.54231 0.48478I
6.57271 + 10.55460I 4.62377 7.07679I
u = 0.658331 + 0.610282I
a = 0.991278 0.834575I
b = 1.55170 + 0.23948I
7.17018 + 2.76260I 2.77811 3.18993I
u = 0.658331 0.610282I
a = 0.991278 + 0.834575I
b = 1.55170 0.23948I
7.17018 2.76260I 2.77811 + 3.18993I
u = 0.782295 + 0.434217I
a = 1.34381 1.23021I
b = 1.407260 + 0.014903I
6.54490 + 2.06360I 3.73772 2.56730I
u = 0.782295 0.434217I
a = 1.34381 + 1.23021I
b = 1.407260 0.014903I
6.54490 2.06360I 3.73772 + 2.56730I
u = 0.873178
a = 0.654136
b = 0.754805
1.61182 1.21940
u = 0.600533 + 0.615475I
a = 0.088416 + 1.268790I
b = 0.943653 0.397797I
0.31286 + 3.64145I 11.2572 9.4738I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.600533 0.615475I
a = 0.088416 1.268790I
b = 0.943653 + 0.397797I
0.31286 3.64145I 11.2572 + 9.4738I
u = 0.110651 + 1.211630I
a = 0.649484 + 0.213764I
b = 0.742245 + 0.814719I
2.38520 + 2.82306I 0
u = 0.110651 1.211630I
a = 0.649484 0.213764I
b = 0.742245 0.814719I
2.38520 2.82306I 0
u = 0.142943 + 1.223340I
a = 0.983994 0.047102I
b = 0.904696 + 0.730444I
4.86587 + 0.83794I 0
u = 0.142943 1.223340I
a = 0.983994 + 0.047102I
b = 0.904696 0.730444I
4.86587 0.83794I 0
u = 0.722991
a = 1.44649
b = 0.416019
5.96932 18.1570
u = 0.591356 + 0.394727I
a = 1.15354 + 1.47575I
b = 1.372070 0.284950I
2.42244 1.86344I 0.32896 + 2.97816I
u = 0.591356 0.394727I
a = 1.15354 1.47575I
b = 1.372070 + 0.284950I
2.42244 + 1.86344I 0.32896 2.97816I
u = 0.284927 + 1.273200I
a = 0.610811 0.705027I
b = 0.378777 + 0.245213I
2.02546 3.64647I 0
u = 0.284927 1.273200I
a = 0.610811 + 0.705027I
b = 0.378777 0.245213I
2.02546 + 3.64647I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.425694 + 1.274300I
a = 0.137225 + 0.299114I
b = 0.804888 + 0.001080I
2.34924 + 4.63206I 0
u = 0.425694 1.274300I
a = 0.137225 0.299114I
b = 0.804888 0.001080I
2.34924 4.63206I 0
u = 0.079610 + 1.366620I
a = 0.059053 0.444591I
b = 0.069313 + 0.938702I
3.77402 + 1.92762I 0
u = 0.079610 1.366620I
a = 0.059053 + 0.444591I
b = 0.069313 0.938702I
3.77402 1.92762I 0
u = 0.630083
a = 0.310787
b = 0.798544
1.05920 8.70240
u = 0.027362 + 1.385500I
a = 0.562065 + 0.539030I
b = 1.62034 0.54932I
1.87045 0.53073I 0
u = 0.027362 1.385500I
a = 0.562065 0.539030I
b = 1.62034 + 0.54932I
1.87045 + 0.53073I 0
u = 0.057418 + 1.395130I
a = 1.54371 + 0.64324I
b = 1.136840 0.424786I
5.83103 3.79502I 0
u = 0.057418 1.395130I
a = 1.54371 0.64324I
b = 1.136840 + 0.424786I
5.83103 + 3.79502I 0
u = 0.16335 + 1.41281I
a = 0.556055 + 0.832668I
b = 0.72716 1.67965I
5.98732 6.70530I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.16335 1.41281I
a = 0.556055 0.832668I
b = 0.72716 + 1.67965I
5.98732 + 6.70530I 0
u = 0.493438 + 0.257877I
a = 0.35961 + 2.32754I
b = 0.373419 1.315190I
0.60246 4.33501I 8.99729 + 10.44789I
u = 0.493438 0.257877I
a = 0.35961 2.32754I
b = 0.373419 + 1.315190I
0.60246 + 4.33501I 8.99729 10.44789I
u = 0.509006 + 0.161109I
a = 0.289495 0.461991I
b = 0.494322 + 0.360163I
0.947117 + 0.129909I 11.27686 2.22644I
u = 0.509006 0.161109I
a = 0.289495 + 0.461991I
b = 0.494322 0.360163I
0.947117 0.129909I 11.27686 + 2.22644I
u = 0.22783 + 1.45064I
a = 0.329271 + 1.292780I
b = 1.72420 0.54667I
8.34733 4.89875I 0
u = 0.22783 1.45064I
a = 0.329271 1.292780I
b = 1.72420 + 0.54667I
8.34733 + 4.89875I 0
u = 0.07299 + 1.48329I
a = 0.151391 + 1.225570I
b = 0.143907 0.422731I
8.28129 + 3.22679I 0
u = 0.07299 1.48329I
a = 0.151391 1.225570I
b = 0.143907 + 0.422731I
8.28129 3.22679I 0
u = 0.069990 + 0.509753I
a = 1.19972 + 2.08736I
b = 0.070424 + 0.287433I
1.81357 + 2.38364I 0.95087 1.41179I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.069990 0.509753I
a = 1.19972 2.08736I
b = 0.070424 0.287433I
1.81357 2.38364I 0.95087 + 1.41179I
u = 0.29461 + 1.50032I
a = 0.017831 1.339470I
b = 1.42401 + 0.25866I
12.8030 + 6.0112I 0
u = 0.29461 1.50032I
a = 0.017831 + 1.339470I
b = 1.42401 0.25866I
12.8030 6.0112I 0
u = 0.30047 + 1.51505I
a = 0.318429 1.306700I
b = 1.68707 + 0.60140I
12.9927 14.6415I 0
u = 0.30047 1.51505I
a = 0.318429 + 1.306700I
b = 1.68707 0.60140I
12.9927 + 14.6415I 0
u = 0.20551 + 1.53545I
a = 0.261245 0.741640I
b = 1.86481 + 0.32365I
14.2076 + 5.8827I 0
u = 0.20551 1.53545I
a = 0.261245 + 0.741640I
b = 1.86481 0.32365I
14.2076 5.8827I 0
u = 0.22302 + 1.54513I
a = 0.600789 + 0.941334I
b = 1.199140 0.475695I
7.40823 + 6.78161I 0
u = 0.22302 1.54513I
a = 0.600789 0.941334I
b = 1.199140 + 0.475695I
7.40823 6.78161I 0
u = 0.20084 + 1.57551I
a = 0.122450 0.759219I
b = 1.53708 0.00469I
14.6210 + 2.0031I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.20084 1.57551I
a = 0.122450 + 0.759219I
b = 1.53708 + 0.00469I
14.6210 2.0031I 0
u = 0.320973 + 0.010257I
a = 1.47897 + 4.46204I
b = 0.824971 0.660602I
1.13474 2.72736I 9.52970 + 1.05898I
u = 0.320973 0.010257I
a = 1.47897 4.46204I
b = 0.824971 + 0.660602I
1.13474 + 2.72736I 9.52970 1.05898I
u = 0.132701
a = 4.04601
b = 1.40543
2.79911 5.45500
10
II.
I
u
2
= hu
12
+u
11
+· · ·+b2u, u
12
6u
10
+· · ·+a2u, u
15
+u
14
+· · ·3u
2
+1i
(i) Arc colorings
a
1
=
0
u
a
6
=
1
0
a
4
=
u
12
+ 6u
10
+ 13u
8
+ 9u
6
6u
4
+ u
3
9u
2
+ 2u
u
12
u
11
+ ··· + 6u
2
+ 2u
a
7
=
1
u
2
a
3
=
u
11
5u
9
9u
7
u
6
5u
5
3u
4
+ 3u
3
3u
2
+ 4u
u
12
u
11
+ ··· + 6u
2
+ 2u
a
12
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
2u
2
a
11
=
u
13
2u
12
+ ··· + u 3
u
13
u
12
+ ··· 2u 1
a
10
=
u
12
u
11
+ ··· + 3u 2
u
13
u
12
+ ··· 2u 1
a
5
=
u
11
5u
9
9u
7
2u
6
6u
5
6u
4
+ u
3
5u
2
+ 3u + 1
u
14
+ u
13
+ ··· + 4u
2
+ 2u
a
2
=
2u
14
3u
13
+ ··· + 5u 3
2u
13
+ u
12
+ ··· + u
2
+ 1
a
9
=
u
13
u
12
+ ··· + 6u 2
2u
13
2u
12
+ ··· u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7u
13
6u
12
49u
11
38u
10
130u
9
90u
8
150u
7
87u
6
39u
5
10u
4
+ 58u
3
+ 27u
2
+ 31u + 8
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
15
12u
14
+ ··· + 15u 1
c
2
u
15
+ 3u
14
+ ··· + 4u
2
1
c
3
u
15
6u
13
+ ··· + 3u 1
c
4
u
15
u
14
+ ··· 6u
2
+ 1
c
5
u
15
4u
13
+ ··· + u 1
c
6
, c
7
u
15
+ u
14
+ ··· 3u
2
+ 1
c
8
u
15
6u
13
+ ··· u 1
c
9
, c
10
u
15
4u
13
+ ··· + u + 1
c
11
u
15
u
14
+ ··· + 4u
2
1
c
12
u
15
u
14
+ ··· + 3u
2
1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
15
2y
14
+ ··· + 49y 1
c
2
y
15
+ 7y
14
+ ··· + 8y 1
c
3
y
15
12y
14
+ ··· + 11y 1
c
4
y
15
15y
14
+ ··· + 12y 1
c
5
, c
9
, c
10
y
15
8y
14
+ ··· 3y 1
c
6
, c
7
, c
12
y
15
+ 15y
14
+ ··· + 6y 1
c
8
y
15
12y
14
+ ··· + 15y 1
c
11
y
15
+ 3y
14
+ ··· + 8y 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.917074
a = 0.317754
b = 0.706611
2.01181 23.5320
u = 0.074215 + 1.225200I
a = 1.37536 + 0.51706I
b = 0.477263 + 0.644746I
4.31514 + 2.06106I 2.80971 3.49368I
u = 0.074215 1.225200I
a = 1.37536 0.51706I
b = 0.477263 0.644746I
4.31514 2.06106I 2.80971 + 3.49368I
u = 0.738441
a = 1.88795
b = 0.822162
5.31354 5.05140
u = 0.391682 + 1.206530I
a = 0.448299 + 0.314891I
b = 0.633852 0.204044I
1.63448 4.71343I 9.81376 + 7.25544I
u = 0.391682 1.206530I
a = 0.448299 0.314891I
b = 0.633852 + 0.204044I
1.63448 + 4.71343I 9.81376 7.25544I
u = 0.310878 + 1.284290I
a = 0.579681 + 0.974594I
b = 0.784151 0.173085I
1.30709 + 3.78442I 1.00032 4.22940I
u = 0.310878 1.284290I
a = 0.579681 0.974594I
b = 0.784151 + 0.173085I
1.30709 3.78442I 1.00032 + 4.22940I
u = 0.117562 + 1.341930I
a = 0.493543 + 0.042097I
b = 1.57940 + 0.48851I
1.30643 + 1.67719I 7.37794 3.24911I
u = 0.117562 1.341930I
a = 0.493543 0.042097I
b = 1.57940 0.48851I
1.30643 1.67719I 7.37794 + 3.24911I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.19173 + 1.46876I
a = 0.602052 + 1.218750I
b = 1.25573 0.76427I
7.60875 5.65349I 0.73377 + 5.33315I
u = 0.19173 1.46876I
a = 0.602052 1.218750I
b = 1.25573 + 0.76427I
7.60875 + 5.65349I 0.73377 5.33315I
u = 0.356463 + 0.351194I
a = 0.23894 + 3.19582I
b = 0.810143 0.625914I
1.51467 3.34740I 2.47459 + 9.57162I
u = 0.356463 0.351194I
a = 0.23894 3.19582I
b = 0.810143 + 0.625914I
1.51467 + 3.34740I 2.47459 9.57162I
u = 0.349922
a = 0.429663
b = 1.51132
3.08020 23.9960
15
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
15
12u
14
+ ··· + 15u 1)(u
54
u
53
+ ··· 23705u 2291)
c
2
(u
15
+ 3u
14
+ ··· + 4u
2
1)(u
54
+ 4u
53
+ ··· + 28u 1)
c
3
(u
15
6u
13
+ ··· + 3u 1)(u
54
u
53
+ ··· 2159u + 239)
c
4
(u
15
u
14
+ ··· 6u
2
+ 1)(u
54
6u
52
+ ··· + 22u + 1)
c
5
(u
15
4u
13
+ ··· + u 1)(u
54
+ u
53
+ ··· + 11u 1)
c
6
, c
7
(u
15
+ u
14
+ ··· 3u
2
+ 1)(u
54
+ 27u
52
+ ··· + 12u + 1)
c
8
(u
15
6u
13
+ ··· u 1)(u
54
+ u
53
+ ··· + u + 1)
c
9
, c
10
(u
15
4u
13
+ ··· + u + 1)(u
54
+ u
53
+ ··· + 11u 1)
c
11
(u
15
u
14
+ ··· + 4u
2
1)(u
54
2u
53
+ ··· + 36164u 1709)
c
12
(u
15
u
14
+ ··· + 3u
2
1)(u
54
+ 27u
52
+ ··· + 12u + 1)
16
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
15
2y
14
+ ··· + 49y 1)
· (y
54
35y
53
+ ··· 169277117y + 5248681)
c
2
(y
15
+ 7y
14
+ ··· + 8y 1)(y
54
+ 54y
53
+ ··· + 60y + 1)
c
3
(y
15
12y
14
+ ··· + 11y 1)(y
54
53y
53
+ ··· + 93385y + 57121)
c
4
(y
15
15y
14
+ ··· + 12y 1)(y
54
12y
53
+ ··· 440y + 1)
c
5
, c
9
, c
10
(y
15
8y
14
+ ··· 3y 1)(y
54
y
53
+ ··· 45y + 1)
c
6
, c
7
, c
12
(y
15
+ 15y
14
+ ··· + 6y 1)(y
54
+ 54y
53
+ ··· 74y + 1)
c
8
(y
15
12y
14
+ ··· + 15y 1)(y
54
49y
53
+ ··· 151y + 1)
c
11
(y
15
+ 3y
14
+ ··· + 8y 1)
· (y
54
+ 62y
53
+ ··· 555348524y + 2920681)
17