12n
0687
(K12n
0687
)
A knot diagram
1
Linearized knot diagam
4 5 6 8 10 1 12 2 6 5 3 7
Solving Sequence
6,10 2,5
3 4 11 12 1 9 8 7
c
5
c
2
c
3
c
10
c
11
c
1
c
9
c
8
c
7
c
4
, c
6
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h9.93374 × 10
151
u
69
5.73011 × 10
151
u
68
+ ··· + 1.25167 × 10
152
b 1.15684 × 10
152
,
2.27978 × 10
152
u
69
+ 7.27815 × 10
151
u
68
+ ··· + 1.25167 × 10
152
a 1.09032 × 10
153
,
u
70
+ 8u
68
+ ··· + 12u + 1i
I
u
2
= h784u
16
1472u
15
+ ··· + 281b 1616, u
16
4u
14
+ ··· + a 7, u
17
u
16
+ ··· u + 1i
* 2 irreducible components of dim
C
= 0, with total 87 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h9.93 × 10
151
u
69
5.73 × 10
151
u
68
+ · · · + 1.25 × 10
152
b 1.16 ×
10
152
, 2.28 × 10
152
u
69
+ 7.28 × 10
151
u
68
+ · · · + 1.25 × 10
152
a 1.09 ×
10
153
, u
70
+ 8u
68
+ · · · + 12u + 1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
2
=
1.82140u
69
0.581477u
68
+ ··· + 39.0109u + 8.71095
0.793642u
69
+ 0.457798u
68
+ ··· + 1.47985u + 0.924244
a
5
=
1
u
2
a
3
=
1.02178u
69
0.283802u
68
+ ··· + 35.3344u + 9.05372
0.484690u
69
+ 0.265454u
68
+ ··· 1.29264u + 0.626569
a
4
=
1.50647u
69
0.549256u
68
+ ··· + 36.6270u + 8.42715
0.484690u
69
+ 0.265454u
68
+ ··· 1.29264u + 0.626569
a
11
=
u
u
3
+ u
a
12
=
2.10413u
69
+ 0.456635u
68
+ ··· 57.5910u 11.5890
0.171585u
69
+ 0.157443u
68
+ ··· 6.10514u 1.41447
a
1
=
1.13758u
69
0.539841u
68
+ ··· + 39.0714u + 7.72721
0.261369u
69
0.0100471u
68
+ ··· 1.35091u + 0.206159
a
9
=
u
u
a
8
=
1.63790u
69
+ 0.361732u
68
+ ··· 57.8284u 11.6027
0.708579u
69
0.0963778u
68
+ ··· 16.6684u 2.12525
a
7
=
1.39909u
69
+ 0.856722u
68
+ ··· 38.1398u 5.68756
0.279079u
69
0.230487u
68
+ ··· 17.0325u 1.58453
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.717657u
69
+ 2.08595u
68
+ ··· + 98.0282u + 17.8328
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
70
8u
69
+ ··· + 54u + 9
c
2
u
70
7u
69
+ ··· + 9260u 7239
c
3
u
70
+ 2u
69
+ ··· + 564u + 41
c
4
u
70
u
69
+ ··· 22u 1
c
5
, c
9
, c
10
u
70
+ 8u
68
+ ··· 12u + 1
c
6
, c
7
, c
12
u
70
+ 34u
68
+ ··· + 17u + 3
c
8
u
70
2u
69
+ ··· + 4105u + 2083
c
11
u
70
+ u
69
+ ··· 329u + 1651
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
70
10y
69
+ ··· 144y + 81
c
2
y
70
61y
69
+ ··· 1022459722y + 52403121
c
3
y
70
+ 12y
69
+ ··· 24782y + 1681
c
4
y
70
+ 7y
69
+ ··· + 122y + 1
c
5
, c
9
, c
10
y
70
+ 16y
69
+ ··· 30y + 1
c
6
, c
7
, c
12
y
70
+ 68y
69
+ ··· 223y + 9
c
8
y
70
+ 12y
69
+ ··· + 246685969y + 4338889
c
11
y
70
65y
69
+ ··· 76523125y + 2725801
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.182629 + 0.959522I
a = 1.001330 + 0.504116I
b = 0.495567 + 0.539126I
5.19104 + 2.89870I 1.83556 3.69030I
u = 0.182629 0.959522I
a = 1.001330 0.504116I
b = 0.495567 0.539126I
5.19104 2.89870I 1.83556 + 3.69030I
u = 0.889971 + 0.615220I
a = 1.49599 0.81473I
b = 0.658738 + 0.726934I
2.94953 + 6.14576I 0
u = 0.889971 0.615220I
a = 1.49599 + 0.81473I
b = 0.658738 0.726934I
2.94953 6.14576I 0
u = 0.467157 + 1.015360I
a = 0.469020 0.334689I
b = 0.91014 + 1.45911I
4.76852 0.93744I 0
u = 0.467157 1.015360I
a = 0.469020 + 0.334689I
b = 0.91014 1.45911I
4.76852 + 0.93744I 0
u = 0.222651 + 0.847009I
a = 1.14984 + 1.14399I
b = 0.0748484 + 0.0360553I
7.73355 + 3.72028I 2.51438 0.93811I
u = 0.222651 0.847009I
a = 1.14984 1.14399I
b = 0.0748484 0.0360553I
7.73355 3.72028I 2.51438 + 0.93811I
u = 0.751668 + 0.837280I
a = 1.72961 0.46280I
b = 1.14330 + 1.25142I
0.30303 6.28207I 0
u = 0.751668 0.837280I
a = 1.72961 + 0.46280I
b = 1.14330 1.25142I
0.30303 + 6.28207I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.770010 + 0.372544I
a = 0.581630 0.055990I
b = 0.144106 + 0.825142I
4.08900 + 2.25007I 3.53748 2.27099I
u = 0.770010 0.372544I
a = 0.581630 + 0.055990I
b = 0.144106 0.825142I
4.08900 2.25007I 3.53748 + 2.27099I
u = 1.14498
a = 1.73239
b = 1.53512
2.60015 58.8670
u = 0.268041 + 0.804909I
a = 0.542252 0.218224I
b = 0.423247 0.869174I
0.98658 2.03464I 3.76283 + 3.73374I
u = 0.268041 0.804909I
a = 0.542252 + 0.218224I
b = 0.423247 + 0.869174I
0.98658 + 2.03464I 3.76283 3.73374I
u = 0.656557 + 0.954242I
a = 0.493373 1.239310I
b = 0.00110 + 1.66937I
0.681468 + 0.834270I 0
u = 0.656557 0.954242I
a = 0.493373 + 1.239310I
b = 0.00110 1.66937I
0.681468 0.834270I 0
u = 0.825164 + 0.845513I
a = 1.40194 + 0.58938I
b = 0.92803 1.30897I
4.72221 + 4.24472I 0
u = 0.825164 0.845513I
a = 1.40194 0.58938I
b = 0.92803 + 1.30897I
4.72221 4.24472I 0
u = 1.068270 + 0.572212I
a = 0.776105 + 0.152158I
b = 0.735609 0.965380I
0.233976 + 0.759074I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.068270 0.572212I
a = 0.776105 0.152158I
b = 0.735609 + 0.965380I
0.233976 0.759074I 0
u = 0.819050 + 0.902886I
a = 1.25597 1.03649I
b = 0.75273 + 1.61897I
1.70243 3.06412I 0
u = 0.819050 0.902886I
a = 1.25597 + 1.03649I
b = 0.75273 1.61897I
1.70243 + 3.06412I 0
u = 0.532408 + 0.562547I
a = 0.491267 + 0.375201I
b = 0.05004 1.69837I
6.45795 6.80158I 1.45639 + 9.56884I
u = 0.532408 0.562547I
a = 0.491267 0.375201I
b = 0.05004 + 1.69837I
6.45795 + 6.80158I 1.45639 9.56884I
u = 0.763532 + 0.981407I
a = 0.747021 + 1.045390I
b = 0.29445 1.52258I
4.29081 + 1.75973I 0
u = 0.763532 0.981407I
a = 0.747021 1.045390I
b = 0.29445 + 1.52258I
4.29081 1.75973I 0
u = 0.031790 + 0.748955I
a = 1.337290 + 0.340343I
b = 1.69605 0.47490I
2.07518 1.88050I 0.58788 + 2.54582I
u = 0.031790 0.748955I
a = 1.337290 0.340343I
b = 1.69605 + 0.47490I
2.07518 + 1.88050I 0.58788 2.54582I
u = 1.026810 + 0.770847I
a = 0.931991 0.352914I
b = 0.727009 + 1.062520I
4.78970 2.73592I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.026810 0.770847I
a = 0.931991 + 0.352914I
b = 0.727009 1.062520I
4.78970 + 2.73592I 0
u = 0.076174 + 0.691781I
a = 1.76879 0.64957I
b = 2.25934 + 0.77220I
8.05518 + 4.99038I 5.61415 + 0.00335I
u = 0.076174 0.691781I
a = 1.76879 + 0.64957I
b = 2.25934 0.77220I
8.05518 4.99038I 5.61415 0.00335I
u = 0.403606 + 0.564847I
a = 0.472960 + 0.090622I
b = 0.124640 + 1.386760I
0.86012 + 4.21216I 6.35099 11.74346I
u = 0.403606 0.564847I
a = 0.472960 0.090622I
b = 0.124640 1.386760I
0.86012 4.21216I 6.35099 + 11.74346I
u = 0.019991 + 0.681568I
a = 0.664079 1.210490I
b = 0.074205 0.421986I
1.57608 2.34912I 0.437437 + 0.644148I
u = 0.019991 0.681568I
a = 0.664079 + 1.210490I
b = 0.074205 + 0.421986I
1.57608 + 2.34912I 0.437437 0.644148I
u = 0.316585 + 0.590067I
a = 3.02818 + 1.36465I
b = 1.287870 + 0.396140I
7.54675 6.57227I 0.27416 + 11.76800I
u = 0.316585 0.590067I
a = 3.02818 1.36465I
b = 1.287870 0.396140I
7.54675 + 6.57227I 0.27416 11.76800I
u = 1.075700 + 0.803829I
a = 1.005200 + 0.615424I
b = 0.311248 1.377500I
4.84131 0.55610I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.075700 0.803829I
a = 1.005200 0.615424I
b = 0.311248 + 1.377500I
4.84131 + 0.55610I 0
u = 0.902166 + 1.001410I
a = 1.057310 0.402054I
b = 0.42852 + 1.63869I
4.61180 + 3.36092I 0
u = 0.902166 1.001410I
a = 1.057310 + 0.402054I
b = 0.42852 1.63869I
4.61180 3.36092I 0
u = 1.093450 + 0.794950I
a = 0.905104 0.704207I
b = 0.255022 + 1.286370I
5.66823 4.85184I 0
u = 1.093450 0.794950I
a = 0.905104 + 0.704207I
b = 0.255022 1.286370I
5.66823 + 4.85184I 0
u = 1.121410 + 0.784623I
a = 0.828517 + 0.738103I
b = 0.236105 1.268720I
0.59567 + 8.98753I 0
u = 1.121410 0.784623I
a = 0.828517 0.738103I
b = 0.236105 + 1.268720I
0.59567 8.98753I 0
u = 0.436857 + 0.420062I
a = 1.56143 2.06163I
b = 1.015010 0.438737I
0.46074 + 3.68809I 9.20342 10.39195I
u = 0.436857 0.420062I
a = 1.56143 + 2.06163I
b = 1.015010 + 0.438737I
0.46074 3.68809I 9.20342 + 10.39195I
u = 0.89928 + 1.09857I
a = 0.710636 0.699922I
b = 0.373865 + 1.162200I
3.77288 4.30359I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.89928 1.09857I
a = 0.710636 + 0.699922I
b = 0.373865 1.162200I
3.77288 + 4.30359I 0
u = 0.08015 + 1.43152I
a = 0.111230 0.162640I
b = 0.744088 + 0.291066I
3.91938 2.59263I 0
u = 0.08015 1.43152I
a = 0.111230 + 0.162640I
b = 0.744088 0.291066I
3.91938 + 2.59263I 0
u = 0.91292 + 1.10722I
a = 1.054940 + 0.541284I
b = 0.76481 1.90183I
3.87345 6.65045I 0
u = 0.91292 1.10722I
a = 1.054940 0.541284I
b = 0.76481 + 1.90183I
3.87345 + 6.65045I 0
u = 0.90704 + 1.11763I
a = 1.107070 0.599871I
b = 0.87122 + 1.85913I
4.62505 + 12.08600I 0
u = 0.90704 1.11763I
a = 1.107070 + 0.599871I
b = 0.87122 1.85913I
4.62505 12.08600I 0
u = 0.90562 + 1.12890I
a = 1.159610 + 0.620259I
b = 0.92779 1.82023I
1.7219 16.2840I 0
u = 0.90562 1.12890I
a = 1.159610 0.620259I
b = 0.92779 + 1.82023I
1.7219 + 16.2840I 0
u = 1.13832 + 0.95435I
a = 0.791876 + 0.485812I
b = 0.603110 1.032090I
1.21898 + 4.01853I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.13832 0.95435I
a = 0.791876 0.485812I
b = 0.603110 + 1.032090I
1.21898 4.01853I 0
u = 0.491312 + 0.042330I
a = 0.813900 + 0.845312I
b = 0.487599 + 0.375306I
1.014060 + 0.126536I 10.90445 2.01322I
u = 0.491312 0.042330I
a = 0.813900 0.845312I
b = 0.487599 0.375306I
1.014060 0.126536I 10.90445 + 2.01322I
u = 0.89008 + 1.25065I
a = 0.591908 + 0.620866I
b = 0.274267 1.010060I
1.81693 + 6.40974I 0
u = 0.89008 1.25065I
a = 0.591908 0.620866I
b = 0.274267 + 1.010060I
1.81693 6.40974I 0
u = 0.17276 + 1.55205I
a = 0.088754 + 0.194039I
b = 0.414173 0.312547I
10.80100 + 6.09312I 0
u = 0.17276 1.55205I
a = 0.088754 0.194039I
b = 0.414173 + 0.312547I
10.80100 6.09312I 0
u = 0.165276 + 0.289045I
a = 1.72562 2.09252I
b = 0.875139 0.770810I
2.39258 2.81193I 4.50166 + 4.86143I
u = 0.165276 0.289045I
a = 1.72562 + 2.09252I
b = 0.875139 + 0.770810I
2.39258 + 2.81193I 4.50166 4.86143I
u = 0.137380
a = 6.75871
b = 0.782505
1.05954 8.79670
11
II. I
u
2
= h784u
16
1472u
15
+ · · · + 281b 1616, u
16
4u
14
+ · · · + a
7, u
17
u
16
+ · · · u + 1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
2
=
u
16
+ 4u
14
+ ··· + 2u + 7
2.79004u
16
+ 5.23843u
15
+ ··· 14.9786u + 5.75089
a
5
=
1
u
2
a
3
=
1.79004u
16
+ 5.23843u
15
+ ··· 12.9786u + 13.7509
1.61210u
16
+ 3.06762u
15
+ ··· 9.74021u + 3.30249
a
4
=
0.177936u
16
+ 2.17082u
15
+ ··· 3.23843u + 10.4484
1.61210u
16
+ 3.06762u
15
+ ··· 9.74021u + 3.30249
a
11
=
u
u
3
+ u
a
12
=
10.3025u
16
9.69039u
15
+ ··· + 43.5053u 2.56228
1.84698u
16
0.733096u
15
+ ··· 1.18505u + 4.82562
a
1
=
5.93594u
16
+ 10.8185u
15
+ ··· 36.4342u + 13.3986
1.53381u
16
2.51246u
15
+ ··· + 11.7153u 5.34520
a
9
=
u
u
a
8
=
9.30249u
16
8.69039u
15
+ ··· + 34.5053u 1.56228
0.00711744u
16
+ 0.686833u
15
+ ··· 5.72954u + 2.17794
a
7
=
2.48754u
16
1.45196u
15
+ ··· + 10.5267u 19.8114
4.92171u
16
4.44484u
15
+ ··· + 15.9751u + 0.957295
(ii) Obstruction class = 1
(iii) Cusp Shapes =
2928
281
u
16
7172
281
u
15
+ ··· +
18839
281
u
13628
281
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
17
7u
16
+ ··· + 7u 1
c
2
u
17
+ 10u
16
+ ··· + 7u + 1
c
3
u
17
3u
16
+ ··· + u 1
c
4
u
17
+ 4u
15
+ ··· + 3u 1
c
5
u
17
u
16
+ ··· u + 1
c
6
, c
7
u
17
+ u
16
+ ··· + 2u + 1
c
8
u
17
+ 3u
16
+ ··· + 4u
2
+ 1
c
9
, c
10
u
17
+ u
16
+ ··· u 1
c
11
u
17
2u
16
+ ··· 6u + 1
c
12
u
17
u
16
+ ··· + 2u 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
17
5y
16
+ ··· + 17y 1
c
2
y
17
8y
16
+ ··· 9y 1
c
3
y
17
+ 9y
16
+ ··· 13y 1
c
4
y
17
+ 8y
16
+ ··· + 11y 1
c
5
, c
9
, c
10
y
17
+ 9y
16
+ ··· 17y 1
c
6
, c
7
, c
12
y
17
+ 17y
16
+ ··· 24y 1
c
8
y
17
11y
16
+ ··· 8y 1
c
11
y
17
8y
16
+ ··· 14y 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.09099
a = 1.84015
b = 1.44593
2.66549 64.1610
u = 0.081066 + 0.881798I
a = 0.253907 + 0.232514I
b = 0.351765 1.188740I
3.35095 1.89433I 0.39933 + 2.13556I
u = 0.081066 0.881798I
a = 0.253907 0.232514I
b = 0.351765 + 1.188740I
3.35095 + 1.89433I 0.39933 2.13556I
u = 0.759591 + 0.834731I
a = 0.926163 + 0.781600I
b = 0.031880 0.497291I
2.84481 + 5.18632I 2.68899 3.82989I
u = 0.759591 0.834731I
a = 0.926163 0.781600I
b = 0.031880 + 0.497291I
2.84481 5.18632I 2.68899 + 3.82989I
u = 0.945692 + 0.860913I
a = 1.057260 + 0.608745I
b = 0.856724 1.108260I
0.63478 + 3.45959I 1.40689 2.05093I
u = 0.945692 0.860913I
a = 1.057260 0.608745I
b = 0.856724 + 1.108260I
0.63478 3.45959I 1.40689 + 2.05093I
u = 0.924682 + 0.905753I
a = 1.012340 0.596735I
b = 0.607612 + 1.271600I
4.25625 3.38186I 8.68961 + 3.41215I
u = 0.924682 0.905753I
a = 1.012340 + 0.596735I
b = 0.607612 1.271600I
4.25625 + 3.38186I 8.68961 3.41215I
u = 0.012323 + 1.348120I
a = 0.449907 0.010058I
b = 1.089120 0.269541I
4.38848 2.75040I 5.64109 + 6.59552I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.012323 1.348120I
a = 0.449907 + 0.010058I
b = 1.089120 + 0.269541I
4.38848 + 2.75040I 5.64109 6.59552I
u = 0.089446 + 0.606473I
a = 1.54762 + 0.76818I
b = 0.646460 + 0.884390I
1.35598 + 3.18194I 1.32413 8.23419I
u = 0.089446 0.606473I
a = 1.54762 0.76818I
b = 0.646460 0.884390I
1.35598 3.18194I 1.32413 + 8.23419I
u = 0.121328 + 1.408910I
a = 0.507302 + 0.085491I
b = 0.851353 + 0.138665I
11.43630 + 6.17014I 6.02947 4.38565I
u = 0.121328 1.408910I
a = 0.507302 0.085491I
b = 0.851353 0.138665I
11.43630 6.17014I 6.02947 + 4.38565I
u = 0.014622 + 0.494941I
a = 3.07152 0.24078I
b = 1.35527 1.02921I
7.52130 5.63580I 0.08114 + 5.24551I
u = 0.014622 0.494941I
a = 3.07152 + 0.24078I
b = 1.35527 + 1.02921I
7.52130 + 5.63580I 0.08114 5.24551I
16
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
17
7u
16
+ ··· + 7u 1)(u
70
8u
69
+ ··· + 54u + 9)
c
2
(u
17
+ 10u
16
+ ··· + 7u + 1)(u
70
7u
69
+ ··· + 9260u 7239)
c
3
(u
17
3u
16
+ ··· + u 1)(u
70
+ 2u
69
+ ··· + 564u + 41)
c
4
(u
17
+ 4u
15
+ ··· + 3u 1)(u
70
u
69
+ ··· 22u 1)
c
5
(u
17
u
16
+ ··· u + 1)(u
70
+ 8u
68
+ ··· 12u + 1)
c
6
, c
7
(u
17
+ u
16
+ ··· + 2u + 1)(u
70
+ 34u
68
+ ··· + 17u + 3)
c
8
(u
17
+ 3u
16
+ ··· + 4u
2
+ 1)(u
70
2u
69
+ ··· + 4105u + 2083)
c
9
, c
10
(u
17
+ u
16
+ ··· u 1)(u
70
+ 8u
68
+ ··· 12u + 1)
c
11
(u
17
2u
16
+ ··· 6u + 1)(u
70
+ u
69
+ ··· 329u + 1651)
c
12
(u
17
u
16
+ ··· + 2u 1)(u
70
+ 34u
68
+ ··· + 17u + 3)
17
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
17
5y
16
+ ··· + 17y 1)(y
70
10y
69
+ ··· 144y + 81)
c
2
(y
17
8y
16
+ ··· 9y 1)
· (y
70
61y
69
+ ··· 1022459722y + 52403121)
c
3
(y
17
+ 9y
16
+ ··· 13y 1)(y
70
+ 12y
69
+ ··· 24782y + 1681)
c
4
(y
17
+ 8y
16
+ ··· + 11y 1)(y
70
+ 7y
69
+ ··· + 122y + 1)
c
5
, c
9
, c
10
(y
17
+ 9y
16
+ ··· 17y 1)(y
70
+ 16y
69
+ ··· 30y + 1)
c
6
, c
7
, c
12
(y
17
+ 17y
16
+ ··· 24y 1)(y
70
+ 68y
69
+ ··· 223y + 9)
c
8
(y
17
11y
16
+ ··· 8y 1)
· (y
70
+ 12y
69
+ ··· + 246685969y + 4338889)
c
11
(y
17
8y
16
+ ··· 14y 1)
· (y
70
65y
69
+ ··· 76523125y + 2725801)
18