12n
0691
(K12n
0691
)
A knot diagram
1
Linearized knot diagam
4 5 8 2 12 10 3 11 5 8 6 9
Solving Sequence
3,7
8
4,10
11 6 12 5 2 1 9
c
7
c
3
c
10
c
6
c
11
c
5
c
2
c
1
c
9
c
4
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h16394625770u
16
+ 7361888468u
15
+ ··· + 176471185595b + 67083506624,
638545424984u
16
+ 494483967338u
15
+ ··· + 176471185595a + 990730965236,
u
17
u
16
+ ··· u + 1i
I
u
2
= hu
7
2u
5
+ 3u
3
+ b 2u 1, 2u
7
2u
6
+ 3u
5
+ 4u
4
4u
3
4u
2
+ a + 3u + 4,
u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1i
I
u
3
= h2.09794 × 10
14
u
15
1.54864 × 10
15
u
14
+ ··· + 1.00649 × 10
18
b 1.27599 × 10
18
,
3.01917 × 10
14
u
15
2.04767 × 10
15
u
14
+ ··· + 2.01298 × 10
18
a 2.50594 × 10
18
,
u
16
u
15
+ ··· + 640u + 256i
I
v
1
= ha, 669v
7
+ 1791v
6
+ 1344v
5
4076v
4
11099v
3
+ 10779v
2
+ 887b + 981v 54,
v
8
+ 2v
7
8v
5
13v
4
+ 28v
3
7v
2
3v + 1i
* 4 irreducible components of dim
C
= 0, with total 49 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h1.64 × 10
10
u
16
+ 7.36 × 10
9
u
15
+ · · · + 1.76× 10
11
b + 6.71 ×10
10
, 6.39 ×
10
11
u
16
+4.94×10
11
u
15
+· · ·+1.76×10
11
a+9.91×10
11
, u
17
u
16
+· · ·u+1i
(i) Arc colorings
a
3
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
4
=
u
u
3
+ u
a
10
=
3.61841u
16
2.80207u
15
+ ··· 2.45782u 5.61412
0.0929026u
16
0.0417172u
15
+ ··· 1.35646u 0.380139
a
11
=
3.73975u
16
3.05444u
15
+ ··· 3.90343u 6.05033
0.0499193u
16
0.188766u
15
+ ··· 1.60883u 0.249100
a
6
=
3.51660u
16
1.48871u
15
+ ··· + 10.1705u 1.96079
0.183505u
16
0.0479152u
15
+ ··· 0.736610u 1.19077
a
12
=
4.59450u
16
5.53078u
15
+ ··· 7.72513u 11.9429
0.302029u
16
0.353052u
15
+ ··· 4.64374u + 0.978839
a
5
=
0.436207u
16
0.314873u
15
+ ··· 2.65787u 1.88181
0.318145u
16
+ 0.389552u
15
+ ··· + 0.690292u 0.0974507
a
2
=
0.249100u
16
+ 0.199181u
15
+ ··· + 1.65271u + 1.85793
0.0482596u
16
0.0849909u
15
+ ··· + 1.20435u + 0.0738023
a
1
=
0.118062u
16
0.0746790u
15
+ ··· + 1.96758u + 1.97926
0.175071u
16
+ 0.0850715u
15
+ ··· + 0.615613u + 0.0952905
a
9
=
3.49708u
16
2.54969u
15
+ ··· 1.01221u 5.17792
0.164310u
16
+ 0.0417260u
15
+ ··· 0.940864u 0.698283
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
2048919230872
176471185595
u
16
1391303845096
176471185595
u
15
+ ···
3163149744064
176471185595
u
6932356318654
176471185595
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
8
, c
10
u
17
7u
16
+ ··· 5u 1
c
3
, c
7
, c
9
u
17
u
16
+ ··· u + 1
c
5
, c
11
u
17
u
16
+ ··· + 3u 1
c
6
u
17
+ u
16
+ ··· 699u + 199
c
12
u
17
+ 3u
16
+ ··· 263u 83
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
8
, c
10
y
17
13y
16
+ ··· + 21y 1
c
3
, c
7
, c
9
y
17
+ 15y
16
+ ··· + 13y 1
c
5
, c
11
y
17
+ 11y
16
+ ··· + 25y 1
c
6
y
17
+ 27y
16
+ ··· + 947097y 39601
c
12
y
17
+ 7y
16
+ ··· + 91413y 6889
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.764077 + 0.442209I
a = 0.346619 + 0.162821I
b = 0.958812 + 0.033588I
4.55533 + 6.93072I 21.1582 11.9778I
u = 0.764077 0.442209I
a = 0.346619 0.162821I
b = 0.958812 0.033588I
4.55533 6.93072I 21.1582 + 11.9778I
u = 0.791671
a = 0.322502
b = 1.02671
8.70952 30.7710
u = 0.753921 + 0.115715I
a = 1.18926 1.58502I
b = 1.125680 0.771688I
0.77832 2.01331I 15.1488 + 1.3786I
u = 0.753921 0.115715I
a = 1.18926 + 1.58502I
b = 1.125680 + 0.771688I
0.77832 + 2.01331I 15.1488 1.3786I
u = 0.502094 + 0.490826I
a = 1.152440 + 0.058194I
b = 0.008463 + 0.987921I
2.49540 2.02523I 6.20824 + 3.33819I
u = 0.502094 0.490826I
a = 1.152440 0.058194I
b = 0.008463 0.987921I
2.49540 + 2.02523I 6.20824 3.33819I
u = 0.291694 + 0.477697I
a = 7.34853 + 5.73057I
b = 1.56713 + 1.11619I
2.45442 + 0.76114I 1.7282 + 15.9915I
u = 0.291694 0.477697I
a = 7.34853 5.73057I
b = 1.56713 1.11619I
2.45442 0.76114I 1.7282 15.9915I
u = 0.439135
a = 0.949461
b = 0.384048
0.644803 15.2830
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.432752
a = 6.06938
b = 0.248275
2.91990 47.5300
u = 0.78485 + 1.87131I
a = 0.345543 0.823882I
b = 0.13775 + 2.40985I
11.20130 3.50827I 11.32341 + 1.79574I
u = 0.78485 1.87131I
a = 0.345543 + 0.823882I
b = 0.13775 2.40985I
11.20130 + 3.50827I 11.32341 1.79574I
u = 0.93651 + 1.91501I
a = 0.272274 + 0.835217I
b = 0.86840 2.32205I
6.80306 + 8.74093I 14.7558 4.0661I
u = 0.93651 1.91501I
a = 0.272274 0.835217I
b = 0.86840 + 2.32205I
6.80306 8.74093I 14.7558 + 4.0661I
u = 0.98322 + 2.02620I
a = 0.244045 0.883210I
b = 1.34803 + 2.71046I
10.6972 14.1953I 12.00000 + 6.60789I
u = 0.98322 2.02620I
a = 0.244045 + 0.883210I
b = 1.34803 2.71046I
10.6972 + 14.1953I 12.00000 6.60789I
6
II. I
u
2
= hu
7
2u
5
+ 3u
3
+ b 2u 1, 2u
7
2u
6
+ · · · + a + 4, u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1i
(i) Arc colorings
a
3
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
4
=
u
u
3
+ u
a
10
=
2u
7
+ 2u
6
3u
5
4u
4
+ 4u
3
+ 4u
2
3u 4
u
7
+ 2u
5
3u
3
+ 2u + 1
a
11
=
2u
7
+ 2u
6
3u
5
4u
4
+ 4u
3
+ 4u
2
3u 5
u
7
+ 2u
5
3u
3
u
2
+ 2u + 1
a
6
=
2u
7
+ 2u
6
4u
5
4u
4
+ 5u
3
+ 4u
2
4u 1
u
7
+ u
5
u
3
+ 2u
2
1
a
12
=
2u
6
4u
4
+ 7u
2
u 5
2u
7
u
6
+ 4u
5
+ 3u
4
5u
3
4u
2
+ 3u + 2
a
5
=
u
4
u
2
+ 1
u
4
a
2
=
u
6
u
4
+ 2u
2
1
u
7
u
6
+ 2u
5
+ u
4
2u
3
2u
2
+ 2u + 1
a
1
=
u
2
1
u
2
a
9
=
2u
7
+ 2u
6
3u
5
4u
4
+ 4u
3
+ 4u
2
3u 4
u
7
+ 2u
5
3u
3
+ 2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
7
4u
6
+ 2u
5
+ 5u
4
3u
3
5u
2
+ 5u 10
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
c
3
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
c
4
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1
c
5
u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1
c
6
u
8
2u
7
u
6
+ 5u
5
+ 4u
4
17u
3
+ 17u
2
7u + 1
c
7
u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1
c
8
(u 1)
8
c
9
u
8
c
10
(u + 1)
8
c
11
u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1
c
12
u
8
+ 3u
7
+ 6u
6
+ 7u
5
+ 13u
4
+ 11u
3
+ 4u
2
+ 3u + 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
c
3
, c
7
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
c
5
, c
11
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
c
6
y
8
6y
7
+ 29y
6
67y
5
+ 126y
4
85y
3
+ 59y
2
15y + 1
c
8
, c
10
(y 1)
8
c
9
y
8
c
12
y
8
+ 3y
7
+ 20y
6
+ 49y
5
+ 47y
4
47y
3
24y
2
y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.570868 + 0.730671I
a = 1.72219 2.56817I
b = 1.50065 0.90255I
2.68559 1.13123I 18.1377 + 5.3065I
u = 0.570868 0.730671I
a = 1.72219 + 2.56817I
b = 1.50065 + 0.90255I
2.68559 + 1.13123I 18.1377 5.3065I
u = 0.855237 + 0.665892I
a = 0.658590 0.551963I
b = 1.43900 0.90910I
0.51448 2.57849I 10.11893 + 3.45077I
u = 0.855237 0.665892I
a = 0.658590 + 0.551963I
b = 1.43900 + 0.90910I
0.51448 + 2.57849I 10.11893 3.45077I
u = 1.09818
a = 0.421763
b = 0.491355
8.14766 12.9880
u = 1.031810 + 0.655470I
a = 0.420504 0.057447I
b = 0.655281 + 0.532312I
4.02461 + 6.44354I 10.82984 2.68172I
u = 1.031810 0.655470I
a = 0.420504 + 0.057447I
b = 0.655281 0.532312I
4.02461 6.44354I 10.82984 + 2.68172I
u = 0.603304
a = 1.86442
b = 0.321397
2.48997 13.8390
10
III. I
u
3
=
h2.10×10
14
u
15
1.55×10
15
u
14
+· · ·+1.01×10
18
b1.28×10
18
, 3.02×10
14
u
15
2.05 × 10
15
u
14
+ · · · + 2.01 × 10
18
a 2.51 × 10
18
, u
16
u
15
+ · · · + 640u + 256i
(i) Arc colorings
a
3
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
4
=
u
u
3
+ u
a
10
=
0.000149985u
15
+ 0.00101723u
14
+ ··· + 0.522231u + 1.24489
0.000208441u
15
+ 0.00153866u
14
+ ··· + 0.527819u + 1.26776
a
11
=
0.000149985u
15
0.00101723u
14
+ ··· 0.522231u 0.244888
0.000391498u
15
+ 0.00253027u
14
+ ··· + 1.56110u + 1.71179
a
6
=
0.0000210778u
15
0.00137312u
14
+ ··· 1.23583u 0.524902
0.000823010u
15
0.00190398u
14
+ ··· 1.08393u 1.43592
a
12
=
0.000987334u
15
+ 0.000332252u
14
+ ··· 1.64360u 0.285638
0.00263050u
15
+ 0.00407270u
14
+ ··· 2.52850u + 0.754844
a
5
=
0.000548337u
15
0.000148181u
14
+ ··· 1.41913u 0.208839
0.00209134u
15
0.00192142u
14
+ ··· + 1.92702u + 0.216705
a
2
=
0.000318911u
15
+ 0.000923900u
14
+ ··· + 0.0782544u + 0.170443
0.0000474371u
15
+ 0.00190210u
14
+ ··· + 1.03533u 0.116481
a
1
=
0.00154300u
15
+ 0.00206961u
14
+ ··· 0.507891u 0.00786525
0.00175647u
15
+ 0.00275194u
14
+ ··· + 1.98501u + 0.0818943
a
9
=
0.000675440u
15
+ 0.000547485u
14
+ ··· 1.09374u + 0.615472
0.00211859u
15
0.000320222u
14
+ ··· + 3.48674u + 2.29159
(ii) Obstruction class = 1
(iii) Cusp Shapes =
4129940980039711
1006491371550221696
u
15
3800282985571637
1006491371550221696
u
14
+ ···+
45304359399533900
7863213840236107
u
73541352487366340
7863213840236107
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
8
, c
10
u
16
3u
15
+ ··· 8u + 1
c
3
, c
7
, c
9
u
16
u
15
+ ··· + 640u + 256
c
5
, c
11
(u
8
u
7
+ 3u
6
2u
5
+ 3u
4
2u
3
1)
2
c
6
u
16
+ 3u
15
+ ··· + 2169u + 361
c
12
u
16
4u
15
+ ··· 189u + 297
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
8
, c
10
y
16
+ 9y
15
+ ··· + 4y + 1
c
3
, c
7
, c
9
y
16
+ 33y
15
+ ··· + 606208y + 65536
c
5
, c
11
(y
8
+ 5y
7
+ 11y
6
+ 10y
5
y
4
10y
3
6y
2
+ 1)
2
c
6
y
16
+ 31y
15
+ ··· 741503y + 130321
c
12
y
16
+ 32y
15
+ ··· + 78327y + 88209
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.928106 + 0.575657I
a = 0.600905 + 0.372711I
b = 0.918546 + 0.300867I
0.290648 13.26997 + 0.I
u = 0.928106 0.575657I
a = 0.600905 0.372711I
b = 0.918546 0.300867I
0.290648 13.26997 + 0.I
u = 0.684023 + 0.882805I
a = 0.433643 0.063937I
b = 0.344993 0.631679I
1.15366 1.27532I 10.53127 + 1.72199I
u = 0.684023 0.882805I
a = 0.433643 + 0.063937I
b = 0.344993 + 0.631679I
1.15366 + 1.27532I 10.53127 1.72199I
u = 0.577755 + 0.986475I
a = 0.638361 0.648733I
b = 0.608076 0.155053I
2.70026 + 3.63283I 9.34305 4.59352I
u = 0.577755 0.986475I
a = 0.638361 + 0.648733I
b = 0.608076 + 0.155053I
2.70026 3.63283I 9.34305 + 4.59352I
u = 0.153757 + 0.400659I
a = 1.128490 + 0.166387I
b = 1.123000 + 0.170958I
1.15366 1.27532I 10.53127 + 1.72199I
u = 0.153757 0.400659I
a = 1.128490 0.166387I
b = 1.123000 0.170958I
1.15366 + 1.27532I 10.53127 1.72199I
u = 1.61868 + 0.98339I
a = 0.385316 0.391577I
b = 1.65420 0.20376I
2.70026 3.63283I 9.34305 + 4.59352I
u = 1.61868 0.98339I
a = 0.385316 + 0.391577I
b = 1.65420 + 0.20376I
2.70026 + 3.63283I 9.34305 4.59352I
14
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.05666 + 2.24811I
a = 0.010165 + 0.766423I
b = 1.22626 2.33561I
12.42750 4.93524I 10.31351 + 3.19667I
u = 0.05666 2.24811I
a = 0.010165 0.766423I
b = 1.22626 + 2.33561I
12.42750 + 4.93524I 10.31351 3.19667I
u = 0.14941 + 2.37106I
a = 0.044468 0.705707I
b = 0.66007 + 2.57178I
8.53095 13.35437 + 0.I
u = 0.14941 2.37106I
a = 0.044468 + 0.705707I
b = 0.66007 2.57178I
8.53095 13.35437 + 0.I
u = 0.13661 + 2.63887I
a = 0.008651 + 0.652267I
b = 0.57250 3.23168I
12.42750 + 4.93524I 10.31351 3.19667I
u = 0.13661 2.63887I
a = 0.008651 0.652267I
b = 0.57250 + 3.23168I
12.42750 4.93524I 10.31351 + 3.19667I
15
IV. I
v
1
=
ha, 669v
7
+1791v
6
+· · ·+887b 54, v
8
+2v
7
8v
5
13v
4
+28v
3
7v
2
3v +1i
(i) Arc colorings
a
3
=
v
0
a
7
=
1
0
a
8
=
1
0
a
4
=
v
0
a
10
=
0
0.754228v
7
2.01917v
6
+ ··· 1.10598v + 0.0608794
a
11
=
0.754228v
7
+ 2.01917v
6
+ ··· + 1.10598v 0.0608794
0.754228v
7
2.01917v
6
+ ··· 1.10598v + 0.0608794
a
6
=
1
1.32244v
7
3.19504v
6
+ ··· 1.54904v + 1.44307
a
12
=
0.872604v
7
1.55581v
6
+ ··· 0.0732807v + 3.76550
3.44419v
7
+ 7.94701v
6
+ ··· + 1.00113v 9.59639
a
5
=
0.510710v
7
1.51522v
6
+ ··· 3.20180v + 0.754228
v
7
2v
6
+ 8v
4
+ 13v
3
28v
2
+ 7v + 3
a
2
=
0.510710v
7
+ 1.51522v
6
+ ··· + 4.20180v 0.754228
v
7
+ 2v
6
8v
4
13v
3
+ 28v
2
7v 3
a
1
=
0.510710v
7
+ 1.51522v
6
+ ··· + 3.20180v 0.754228
v
7
+ 2v
6
8v
4
13v
3
+ 28v
2
7v 3
a
9
=
1.32244v
7
3.19504v
6
+ ··· 1.54904v + 2.44307
1.32244v
7
+ 3.19504v
6
+ ··· + 1.54904v 1.44307
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
2247
887
v
7
+
4687
887
v
6
426
887
v
5
21184
887
v
4
35807
887
v
3
+
61378
887
v
2
+
5411
887
v
17810
887
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
8
c
3
, c
7
u
8
c
4
(u + 1)
8
c
5
u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1
c
6
, c
8
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
c
9
, c
12
u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1
c
10
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1
c
11
u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
8
c
3
, c
7
y
8
c
5
, c
11
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
c
6
, c
8
, c
10
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
c
9
, c
12
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.230330 + 0.083902I
a = 0
b = 0.108090 0.747508I
0.51448 + 2.57849I 10.11893 3.45077I
v = 1.230330 0.083902I
a = 0
b = 0.108090 + 0.747508I
0.51448 2.57849I 10.11893 + 3.45077I
v = 0.370895 + 0.073482I
a = 0
b = 1.334530 0.318930I
4.02461 6.44354I 10.82984 + 2.68172I
v = 0.370895 0.073482I
a = 0
b = 1.334530 + 0.318930I
4.02461 + 6.44354I 10.82984 2.68172I
v = 0.337834
a = 0
b = 1.37100
8.14766 12.9880
v = 1.21928 + 2.03110I
a = 0
b = 1.180120 0.268597I
2.68559 + 1.13123I 18.1377 5.3065I
v = 1.21928 2.03110I
a = 0
b = 1.180120 + 0.268597I
2.68559 1.13123I 18.1377 + 5.3065I
v = 2.42604
a = 0
b = 0.463640
2.48997 13.8390
19
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
8
((u 1)
8
)(u
8
+ u
7
+ ··· + 2u 1)(u
16
3u
15
+ ··· 8u + 1)
· (u
17
7u
16
+ ··· 5u 1)
c
3
u
8
(u
8
u
7
+ ··· + 2u 1)(u
16
u
15
+ ··· + 640u + 256)
· (u
17
u
16
+ ··· u + 1)
c
4
, c
10
((u + 1)
8
)(u
8
u
7
+ ··· 2u 1)(u
16
3u
15
+ ··· 8u + 1)
· (u
17
7u
16
+ ··· 5u 1)
c
5
, c
11
(u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
· (u
8
u
7
+ 3u
6
2u
5
+ 3u
4
2u
3
1)
2
· (u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
· (u
17
u
16
+ ··· + 3u 1)
c
6
(u
8
2u
7
u
6
+ 5u
5
+ 4u
4
17u
3
+ 17u
2
7u + 1)
· (u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)(u
16
+ 3u
15
+ ··· + 2169u + 361)
· (u
17
+ u
16
+ ··· 699u + 199)
c
7
, c
9
u
8
(u
8
+ u
7
+ ··· 2u 1)(u
16
u
15
+ ··· + 640u + 256)
· (u
17
u
16
+ ··· u + 1)
c
12
(u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1)
· (u
8
+ 3u
7
+ 6u
6
+ 7u
5
+ 13u
4
+ 11u
3
+ 4u
2
+ 3u + 1)
· (u
16
4u
15
+ ··· 189u + 297)(u
17
+ 3u
16
+ ··· 263u 83)
20
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
8
, c
10
(y 1)
8
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
16
+ 9y
15
+ ··· + 4y + 1)(y
17
13y
16
+ ··· + 21y 1)
c
3
, c
7
, c
9
y
8
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (y
16
+ 33y
15
+ ··· + 606208y + 65536)(y
17
+ 15y
16
+ ··· + 13y 1)
c
5
, c
11
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
2
· (y
8
+ 5y
7
+ 11y
6
+ 10y
5
y
4
10y
3
6y
2
+ 1)
2
· (y
17
+ 11y
16
+ ··· + 25y 1)
c
6
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
8
6y
7
+ 29y
6
67y
5
+ 126y
4
85y
3
+ 59y
2
15y + 1)
· (y
16
+ 31y
15
+ ··· 741503y + 130321)
· (y
17
+ 27y
16
+ ··· + 947097y 39601)
c
12
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (y
8
+ 3y
7
+ 20y
6
+ 49y
5
+ 47y
4
47y
3
24y
2
y + 1)
· (y
16
+ 32y
15
+ ··· + 78327y + 88209)
· (y
17
+ 7y
16
+ ··· + 91413y 6889)
21